ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual UUDD magnetic chain structure of the spin-1/2 tetragonally distorted spinel GeCu2O4

61   0   0.0 ( 0 )
 نشر من قبل Xianglin Ke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GeCu2O4 exhibits a tetragonal spinel structure due to the strong Jahn-Teller distortion associated with Cu2+ ions. We show that its magnetic structure can be described as slabs composed of a pair of layers with orthogonally oriented spin 1/2 Cu chains in the basal ab plane. The spins between the two layers within a slab are collinearly aligned while the spin directions of neighboring slabs are perpendicular to each other. Interestingly, we find that spins along each chain form an unusual up-up-down-down (UUDD) pattern, suggesting a non-negligible nearest-neighbor biquadratic exchange interaction in the effective classical spin Hamiltonian. We hypothesize that spin-orbit coupling and orbital mixing of Cu2+ ions in this system is non-negligible, which calls for future calculations using perturbation theory with extended Hilbert (spin and orbital) space and calculations based on density functional theory including spin-orbit coupling and looking at the global stability of the UUDD state.



قيم البحث

اقرأ أيضاً

We experimentally investigated the magnetic properties of NiCo$_2$O$_4$ epitaxial films known to be conductive oxides with perpendicular magnetic anisotropy (PMA) at room temperature. Both magneto-torque and magnetization measurements at various temp eratures provide clear experimental evidence of the spin reorientation transition at which the MA changes from PMA to easy-cone magnetic anisotropy (ECMA) at a certain temperature ($T_{rm{SR}}$). ECMA was commonly observed in films grown by pulsed laser deposition and reactive radio frequency magnetron sputtering, although $T_{mathrm{SR}}$ is dependent on the growth method as well as the conditions. The cone angles measured from the $c$-axis increased successively at $T_{mathrm{SR}}$ and approached a maximum of 45-50 degrees at the lowest measurement temperature of 5 K. Calculation with the cluster model suggests that the Ni$^{3+}$ ions occupying the $T_d$ site could be the origin of the ECMA. Both the magnetic properties and the results of the calculation based on the cluster model indicate that the ECMA is attributable to the cation anti-site distribution of Ni$^{3+}$, which is possibly formed during the growth process of the thin films.
Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin reson ance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field $H_{sat}=48.5$ T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field.
The magnetoelectric (ME) effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S=1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN=5.5 K. Pyroelectric Jp(T) and magnetoelectric current JME(H) measurements in the presence of a bias electric field are used to reveal that SrCuTe2O6 shows clear variations of Jp(T) across TN at constant magnetic fields. Furthermore, isothermal measurements of JME(H) also develop clear peaks at finite magnetic fields, of which traces are consistent with the spin-flop transitions observed in the magnetization studies. As a result, the anomalies observed in Jp(T) and JME(H) curves well match with the field-temperature phase diagram constructed from magnetization and dielectric constant measurements, demonstrating that SrCuTe2O6 is a new magnetoelectric compound with S=1/2 spin chains.
We investigate the electronic and magnetic properties of the kagome mineral averievite (CsCl)Cu$_5$V$_2$O$_{10}$ and its phosphate analog (CsCl)Cu$_5$P$_2$O$_{10}$ using first-principles calculations. The crystal structure of these compounds features Cu$^{2+}$ kagome layers sandwiched between Cu$^{2+}$-P$^{5+}$/Cu$^{2+}$-V$^{5+}$ honeycomb planes, with pyrochlore slabs made of corner-sharing Cu-tetrahedra being formed. The induced chemical pressure effect upon substitution of V by P causes significant changes in the structure and magnetic properties. Even though the in-plane antiferromagnetic (AFM) coupling (J$_1$) within the kagome layer is similar in the two materials, the inter-plane AFM coupling (J$_2$) between kagome and honeycomb layers is five times larger in the P-variant increasing the degree of magnetic frustration in the constituting Cu-tetrahedra.
With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe$_2$YZ with Y = (Ni, Co, Pt), and Co$_2$YZ with Y = (Ni, Fe, Pt) where, in both cases, Z = (Al, Ga, Ge, In, Sn). We find that for the Co$_2$NiZ, Co$_2$PtZ, and Fe$_2$PtZ families the cubic phase is always, at $T=0$, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe$_2$NiZ and Fe$_2$CoZ families this is the case for only 2 compounds -- Fe$_2$CoGe and Fe$_2$CoSn. For all compounds in which a tetragonal distortion occurs we calculate the MAE finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co$_2$NiGa has an MAE of -2.11~MJ/m$^3$). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا