ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative Anomaly in (1+1)d Rational Conformal Field Theory

144   0   0.0 ( 0 )
 نشر من قبل Meng Cheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study t Hooft anomalies of symmetry-enriched rational conformal field theories (RCFT) in (1+1)d. Such anomalies determine whether a theory can be realized in a truly (1+1)d system with on-site symmetry, or on the edge of a (2+1)d symmetry-protected topological phase. RCFTs with the identical symmetry actions on their chiral algebras may have different t Hooft anomalies due to additional symmetry charges on local primary operators. To compute the relative anomaly, we establish a precise correspondence between (1+1)d non-chiral RCFTs and (2+1)d doubled symmetry-enriched topological (SET) phases with a choice of symmetric gapped boundary. Based on these results we derive a general formula for the relative t Hooft anomaly in terms of algebraic data that characterizes the SET phase and its boundary.

قيم البحث

اقرأ أيضاً

We examine (3+1)D topological ordered phases with $C_k$ rotation symmetry. We show that some rotation symmetric (3+1)D topological orders are anomalous, in the sense that they cannot exist in standalone (3+1)D systems, but only exist on the surface o f (4+1)D SPT phases. For (3+1)D discrete gauge theories, we propose anomaly indicator that can diagnose the $mathbb{Z}_k$ valued rotation anomaly. Since (3+1)D topological phases support both point-like and loop-like excitations, the indicator is expressed in terms of the symmetry properties of point and loop-like excitations, and topological data of (3+1)D discrete gauge theories.
76 - Ryohei Kobayashi 2021
In this short paper, we argue that the chiral central charge $c_-$ of a (2+1)d topological ordered state is sometimes strongly constrained by t Hooft anomaly of anti-unitary global symmetry. For example, if a (2+1)d fermionic TQFT has a time reversal anomaly with $T^2=(-1)^F$ labeled as $ uinmathbb{Z}_{16}$, the TQFT must have $c_-=1/4$ mod $1/2$ for odd $ u$, while $c_-=0$ mod $1/2$ for even $ u$. This generalizes the fact that the bosonic TQFT with $T$ anomaly in a particular class must carry $c_-=4$ mod $8$ to fermionic cases. We also study such a constraint for fermionic TQFT with $U(1)times CT$ symmetry, which is regarded as a gapped surface of the topological superconductor in class AIII.
We review the imaginary time path integral approach to the quench dynamics of conformal field theories. We show how this technique can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both g lobal and local quenches. We also briefly review other quench protocols. We carefully discuss the limits of applicability of these results to realistic models of condensed matter and cold atoms.
The classification of topological phases of matter in the presence of interactions is an area of intense interest. One possible means of classification is via studying the partition function under modular transforms, as the presence of an anomalous p hase arising in the edge theory of a D-dimensional system under modular transformation, or modular anomaly, signals the presence of a (D+1)-D non-trivial bulk. In this work, we discuss the modular transformations of conformal field theories along a (2+1)-D and a (3+1)-D edge. Using both analytical and numerical methods, we show that chiral complex free fermions in (2+1)-D and (3+1)-D are modular invariant. However, we show in (3+1)-D that when the edge theory is coupled to a background U(1) gauge field this results in the presence of a modular anomaly that is the manifestation of a quantum Hall effect in a (4+1)-D bulk. Using the modular anomaly, we find that the edge theory of (4+1)-D insulator with spacetime inversion symmetry(P*T) and fermion number parity symmetry for each spin becomes modular invariant when 8 copies of the edges exist.
123 - Ryohei Kobayashi 2020
We discuss a way to construct a commuting projector Hamiltonian model for a (3+1)d topological superconductor in class DIII. The wave function is given by a sort of string net of the Kitaev wire, decorated on the time reversal (T) domain wall. Our Ha miltonian is provided on a generic 3d manifold equipped with a discrete form of the spin structure. We will see how the 3d spin structure induces a 2d spin structure (called a Kasteleyn direction on a 2d lattice) on T domain walls, which makes possible to define fluctuating Kitaev wires on them. Upon breaking the T symmetry in our model, we find the unbroken remnant of the symmetry which is defined on the time reversal domain wall. The domain wall supports the 2d non-trivial SPT protected by the unbroken symmetry, which allows us to determine the SPT classification of our model, based on the recent QFT argument by Hason, Komargodski, and Thorngren.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا