ﻻ يوجد ملخص باللغة العربية
Aims: We provide a new distance estimate for the Pleiades based on the moving cluster method, which will be useful to further discuss the so-called Pleiades distance controversy and compare it with the very precise parallaxes from the Gaia space mission. Methods: We apply a refurbished implementation of the convergent point search method to an updated census of Pleiades stars to calculate the convergent point position of the cluster from stellar proper motions. Then, we derive individual parallaxes for 64 cluster members using radial velocities compiled from the literature, and approximate parallaxes for another 1146 stars based on the spatial velocity of the cluster. This represents the largest sample of Pleiades stars with individual distances to date. Results: The parallaxes derived in this work are in good agreement with previous results obtained in different studies (excluding Hipparcos) for individual stars in the cluster. We report a mean parallax of $7.44pm 0.08$~mas and distance of $134.4^{+2.9}_{-2.8}$pc that is consistent with the weighted mean of $135.0pm 0.6$pc obtained from the non-Hipparcos results in the literature. Conclusions: Our result for the distance to the Pleiades open cluster is not consistent with the Hipparcos catalog, but favors the recent and more precise distance determination of $136.2pm 1.2$pc obtained from Very Long Baseline Interferometry observations. It is also in good agreement with the mean distance of $133pm 5$pc obtained from the first trigonometric parallaxes delivered by the Gaia satellite for the brightest cluster members in common with our sample.
We have derived Fe abundances of 16 solar-type Pleiades dwarfs by means of an equivalent width analysis of Fe I and Fe II lines in high-resolution spectra obtained with the Hobby - Eberly Telescope and High Resolution Spectrograph. Abundances derived
We present a new technique designed to take full advantage of the high dimensionality (photometric, astrometric, temporal) of the DANCe survey to derive self-consistent and robust membership probabilities of the Pleiades cluster. We aim at developing
We present optical photometry (i- and Z-band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometr
Young open clusters are ideal laboratories to understand star formation process. We present deep UBV I and Halpha photometry for the young open cluster IC 1590 in the center of the H II region NGC 281. Early-type members are selected from UBV photome
The evolution of lithium abundance over a stars lifetime is indicative of transport processes operating in the stellar interior. We revisit the relationship between lithium content and rotation rate previously reported for cool dwarfs in the Pleiades