ﻻ يوجد ملخص باللغة العربية
We have derived Fe abundances of 16 solar-type Pleiades dwarfs by means of an equivalent width analysis of Fe I and Fe II lines in high-resolution spectra obtained with the Hobby - Eberly Telescope and High Resolution Spectrograph. Abundances derived from Fe II lines are larger than those derived from Fe I lines (herein referred to as over-ionization) for stars with Teff < 5400 K, and the discrepancy (deltaFe = [Fe II/H] - [Fe I/H]) increases dramatically with decreasing Teff, reaching over 0.8 dex for the coolest stars of our sample. The Pleiades joins the open clusters M 34, the Hyades, IC 2602, and IC 2391, and the Ursa Major moving group, demonstrating ostensible over-ionization trends. The Pleiades deltaFe abundances are correlated with Ca II infrared triplet and Halpha chromospheric emission indicators and relative differences therein. Oxygen abundances of our Pleiades sample derived from the high-excitation O I triplet have been previously shown to increase with decreasing Teff, and a comparison with the deltaFe abundances suggests that the over-excitation (larger abundances derived from high excitation lines relative to low excitation lines) and over-ionization effects that have been observed in cool open cluster and disk field main sequence (MS) dwarfs share a common origin. Star-to-star Fe I abundances have low internal scatter, but the abundances of stars with Teff < 5400 K are systematically higher compared to the warmer stars. The cool star [Fe I/H] abundances cannot be connected directly to over-excitation effects, but similarities with the deltaFe and O I triplet trends suggest the abundances are dubious. Using the [Fe I/H] abundances of five stars with Teff > 5400 K, we derive a mean Pleiades cluster metallicity of [Fe/H] = +0.01 +/- 0.02.
We utilize high-resolution (R~60,000), high S/N (~100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the 6707 Li I line strengths in this young cluster. Our Pleiads, selected for their small projected rota
Open Clusters have long been used to study the chemo-dynamical evolution of the Galactic disk. This requires an homogeneously analysed sample covering a wide range of ages and distances. In this aper we present the OCCASO second data release. This co
We present atmospheric parameters for 51 nearby FG dwarfs uniformly distributed over the -2.60 < [Fe/H] < +0.20 metallicity range that is suitable for the Galactic chemical evolution research. Lines of iron, Fe I and Fe II, were used to derive a homo
Aims: We provide a new distance estimate for the Pleiades based on the moving cluster method, which will be useful to further discuss the so-called Pleiades distance controversy and compare it with the very precise parallaxes from the Gaia space miss
Heavy ions are markers of the physical processes responsible for the density and temperature distribution throughout the fine scale magnetic structures that define the shape of the solar corona. One of their properties, whose empirical determination