ﻻ يوجد ملخص باللغة العربية
We present a new technique designed to take full advantage of the high dimensionality (photometric, astrometric, temporal) of the DANCe survey to derive self-consistent and robust membership probabilities of the Pleiades cluster. We aim at developing a methodology to infer membership probabilities to the Pleiades cluster from the DANCe multidimensional astro-photometric data set in a consistent way throughout the entire derivation. The determination of the membership probabilities has to be applicable to censored data and must incorporate the measurement uncertainties into the inference procedure. We use Bayes theorem and a curvilinear forward model for the likelihood of the measurements of cluster members in the colour-magnitude space, to infer posterior membership probabilities. The distribution of the cluster members proper motions and the distribution of contaminants in the full multidimensional astro-photometric space is modelled with a mixture-of-Gaussians likelihood. We analyse several representation spaces composed of the proper motions plus a subset of the available magnitudes and colour indices. We select two prominent representation spaces composed of variables selected using feature relevance determination techniques based in Random Forests, and analyse the resulting samples of high probability candidates. We consistently find lists of high probability (p > 0.9975) candidates with $approx$ 1000 sources, 4 to 5 times more than obtained in the most recent astro-photometric studies of the cluster. The methodology presented here is ready for application in data sets that include more dimensions, such as radial and/or rotational velocities, spectral indices and variability.
Relative proper motions and cluster membership probabilities have been derived for ~ 2500 stars in the field of the open star cluster NGC 3766. The cluster has been observed in $B$ and $V$ broadband filters at two epochs separated by ~ 6 years using
Open clusters belonging to star-forming complexes are the leftovers from the initial stellar generations. The study of these young systems provides constraints to models of star formation and evolution as well as to the properties of the Galactic dis
We aim at identifying the clusters members by deriving membership probabilities for the sources within 1 degree of the clusters center, going further away than equivalent previous studies. We measure accurate proper motions and multi-wavelength (opti
We introduce a new effective strategy to assign group and cluster membership probabilities $P_{mem}$ to galaxies using photometric redshift information. Large dynamical ranges both in halo mass and cosmic time are considered. The method takes the mag
By exploiting two ACS/HST datasets separated by a temporal baseline of ~7 years, we have determined the relative stellar proper motions (providing membership) and the absolute proper motion of the Galactic globular cluster M71. The absolute proper mo