ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing compensated magnetic states in tetragonal Mn3Ge-based alloys

66   0   0.0 ( 0 )
 نشر من قبل Guizhou Xu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic compensated state attracted much interests due to the observed large exchange bias and large coercivity, and its potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by ab initio calculations with KKR-CPA for the treatment of random substitution, we obtain the complete compensated states in the Ni (Pd, Pt) doped Mn3Ge-based D022-type tetragonal Heusler alloys. We find the total moment change is asymmetric across the compensation point (at ~ x = 0.3) in Mn3-xYxGe (Y = Ni, Pd, Pt), which is highly conforming to that experimentally observed in Mn3Ga. In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties can emerge at this point. Further electronic analysis for the three compensation compositions reveals large spin polarizations, together with the high Curie temperature of the host Mn3Ge, making them promising candidates for spin transfer torque applications.



قيم البحث

اقرأ أيضاً

In recent years, antiferromagnetic spintronics has received much attention since ideal antiferromagnets do not produce stray fields and are much more stable to external magnetic fields compared to materials with net magnetization. Akin to antiferroma gnets, compensated ferrimagnets have zero net magnetization but have the potential for large spin-polarization and strong out of plane magnetic anisotropy, and, hence, are ideal candidates for high density memory applications. Here, we demonstrate that a fully compensated magnetic state with a tunable magnetic anisotropy is realized in Mn-Pt-Ga based tetragonal Heusler thin films. Furthermore, we show that a bilayer formed from a fully compensated and a partially compensated Mn-Pt-Ga layer, exhibits a large interfacial exchange bias up to room temperature. The present work establishes a novel design principle for spintronic devices that are formed from materials with similar elemental compositions and nearly identical crystal and electronic structures. Such devices are of significant practical value due to their improved properties such as thermal stability. The flexible nature of Heusler materials to achieve tunable magnetizations, and anisotropies within closely matched materials provides a new direction to the growing field of antiferromagnetic spintronics.
133 - Joseph Finley , Luqiao Liu 2016
Despite the potential advantages of information storage in antiferromagnetically coupled materials, it remains unclear whether one can control the magnetic moment orientation efficiently because of the cancelled magnetic moment. Here, we report spin- orbit torque induced magnetization switching of ferrimagnetic Co1-xTbx films with perpendicular magnetic anisotropy. Current induced switching is demonstrated in all of the studied film compositions, including those near the magnetization compensation point. The spin-orbit torque induced effective field is further quantified in the domain wall motion regime. A divergent behavior that scales with the inverse of magnetic moment is confirmed close to the compensation point, which is consistent with angular momentum conservation. Moreover, we also quantify the Dzyaloshinskii-Moriya interaction energy in the Ta/Co1-xTbx system and we find that the energy density increases as a function of the Tb concentration. The demonstrated spin-orbit torque switching, in combination with the fast magnetic dynamics and minimal net magnetization of ferrimagnetic alloys, promises spintronic devices that are faster and with higher density than traditional ferromagnetic systems.
We explore an opportunity to induce and control tetragonal distortion in materials. The idea involves formation of a binary alloy from parent compounds having body-centered and face-centered symmetries. The concept is illustrated in the case of FeNi$ _{1-x}$Co$_x$ magnetic alloy formed by substitutional doping of the L1$_0$ FeNi magnet with Co. Using electronic structure calculations we demonstrate that the tetragonal strain in this system can be controlled by concentration and it reaches maximum for $x=0.5$. This finding is then applied to create a large magnetocrystalline anisotropy (MAE) in FeNi$_{1-x}$Co$_x$ system by considering an interplay of the tetragonal distortion with electronic concentration and chemical anisotropy. In particular, we identify a new ordered FeNi$_{0.5}$Co$_{0.5}$ system with MAE larger by a factor 4.5 from the L1$_0$ FeNi magnet.
122 - Bimalesh Giri 2020
Manipulation of magnetic ground states by effective control of competing magnetic interactions has led to the finding of many exotic magnetic states. In this direction, the tetragonal Heusler compounds consisting of multiple magnetic sublattices and crystal symmetry favoring chiral Dzyaloshinskii-Moriya interaction (DMI) provide an ideal base to realize non-trivial magnetic structures. Here, we present the observation of a large robust topological Hall effect (THE) in the multi-sublattice Mn$_{2-x}$PtIn Heusler magnets. The topological Hall resistivity, which originates from the non-vanishing real space Berry curvature in the presence of non-zero scalar spin chirality, systematically decreases with decreasing the magnitude of the canting angle of the magnetic moments at different sublattices. With help of first principle calculations, magnetic and neutron diffraction measurements, we establish that the presence of a tunable non-coplanar magnetic structure arising from the competing Heisenberg exchanges and chiral DMI from the D$_{2d}$ symmetry structure is responsible for the observed THE. The robustness of the THE with respect to the degree of non-collinearity adds up a new degree of freedom for designing THE based spintronic devices.
Based on high-throughput density functional theory calculations, we investigated the effects of light interstitial H, B, C, and N atoms on the magnetic properties of cubic Heusler alloys, with the aim to design new rare-earth free permanent magnets. It is observed that the interstitial atoms induce significant tetragonal distortions, leading to 32 candidates with large ($>$ 0.4 MJ/m$^3$) uniaxial magneto-crystalline anisotropy energies (MAEs) and 10 cases with large in-plane MAEs. Detailed analysis following the the perturbation theory and chemical bonding reveals the strong MAE originates from the local crystalline distortions and thus the changes of the chemical bonding around the interstitials. This provides a valuable way to tailor the MAEs to obtain competitive permanent magnets, filling the gap between high performance Sm-Co/Nd-Fe-B and widely used ferrite/AlNiCo materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا