ﻻ يوجد ملخص باللغة العربية
Manipulation of magnetic ground states by effective control of competing magnetic interactions has led to the finding of many exotic magnetic states. In this direction, the tetragonal Heusler compounds consisting of multiple magnetic sublattices and crystal symmetry favoring chiral Dzyaloshinskii-Moriya interaction (DMI) provide an ideal base to realize non-trivial magnetic structures. Here, we present the observation of a large robust topological Hall effect (THE) in the multi-sublattice Mn$_{2-x}$PtIn Heusler magnets. The topological Hall resistivity, which originates from the non-vanishing real space Berry curvature in the presence of non-zero scalar spin chirality, systematically decreases with decreasing the magnitude of the canting angle of the magnetic moments at different sublattices. With help of first principle calculations, magnetic and neutron diffraction measurements, we establish that the presence of a tunable non-coplanar magnetic structure arising from the competing Heisenberg exchanges and chiral DMI from the D$_{2d}$ symmetry structure is responsible for the observed THE. The robustness of the THE with respect to the degree of non-collinearity adds up a new degree of freedom for designing THE based spintronic devices.
Electrical detection of topological magnetic textures such as skyrmions is currently limited to conducting materials. While magnetic insulators offer key advantages for skyrmion technologies with high speed and low loss, they have not yet been explor
Polycrystalline Heusler compounds Ni2Mn0.75Cu0.25Ga0.84Al0.16 with a martensitic transition between ferromagnetic phases and Ni2Mn0.70Cu0.30Ga0.84Al0.16 with a magnetostructural transformation were investigated by magnetization and thermal measuremen
Heusler compounds having $textit{D}$${}_{2d}$ crystal symmetry gained much attention recently due to the stabilization of a vortex-like spin texture called antiskyrmions in thin lamellae of Mn${}_{1.4}$Pt${}_{0.9}$Pd${}_{0.1}$Sn as reported in the wo
The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refriger
We report a systematic study on the magneto-structural transition in Mn-rich Fe-doped Mn-Fe-Ni-Sn(Sb/In) Heusler alloys by keeping the total valence electron concentration (e/a ratio) fixed. The martensitic transition (MT) temperature is found to shi