ﻻ يوجد ملخص باللغة العربية
In accelerator and plasma physics it is accepted that there is no need to solve the dynamical equations for particles in covariant form, i.e. by using the coordinate-independent proper time to parameterize particle world-lines in space-time: to describe dynamics in the laboratory frame, there is no need to use the laws of relativistic kinematics. It is sufficient to account for the relativistic dependence of particles momenta on the velocity in the second Newtons law. Then, the coupling of fields and particles is based on the use of result from particle dynamics treated according to Newtons laws in terms of the relativistic three-momentum and on the use of Maxwells equations in standard form. Previously, we argued that this is a misconception. Here we describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwells equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwells equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and then by using the laboratory time to parameterize the trajectory curves. We show a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. Previous theoretical and simulation results in accelerator and plasma physics should be re-examined in the light of the pointed difference between conventional and covariant particle tracking.
C. B. Schroeder, E. Esarey, C. Benedetti, and W. P. Leemans {Phys. Rev. ST Accel. Beams 13, 101301 (2010) and 15, 051301 (2012)} have proposed a set of parameters for a TeV-scale collider based on plasma wake field accelerator principles. In particul
Maxwell theory is usually treated in the lab frame under the standard time order (light-signal clock synchronization). Particle tracking in the lab frame usually treats time as an independent variable. Then, the evolution of electron beams is treated
The field of plasma-based particle accelerators has seen tremendous progress over the past decade and experienced significant growth in the number of activities. During this process, the involved scientific community has expanded from traditional uni
This report is a summary of two preparatory workshops, documenting the community vision for the national accelerator and beam physics research program. It identifies the Grand Challenges of accelerator and beam physics (ABP) field and documents resea
Laser plasma acceleration at kilohertz repetition rate has recently been shown to work in two different regimes, with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma de