ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Physics considerations for laser-plasma linear colliders and on Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders

164   0   0.0 ( 0 )
 نشر من قبل Sergei Nagaitsev
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

C. B. Schroeder, E. Esarey, C. Benedetti, and W. P. Leemans {Phys. Rev. ST Accel. Beams 13, 101301 (2010) and 15, 051301 (2012)} have proposed a set of parameters for a TeV-scale collider based on plasma wake field accelerator principles. In particular, it is suggested that the luminosities greater than 10^34 cm-2s-1 are attainable for an electron-positron collider. In this comment we dispute this set of parameters on the basis of first principles. The interactions of accelerating beam with plasma impose fundamental limitations on beam properties and, thus, on attainable luminosity values.



قيم البحث

اقرأ أيضاً

Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts.
109 - Erik Adli 2019
A linear electron-positron collider operating at TeV scale energies will provide high precision measurements and allow, for example, precision studies of the Higgs boson as well as searches for physics beyond the standard model. A future linear colli der should produce collisions at high energy, with high luminosity and with a good wall plug to beam power transfer efficiency. The luminosity per power consumed is a key metric that can be used to compare linear collider concepts. The plasma wakefield accelerator has demonstrated high-gradient, high-efficiency acceleration of an electron beam, and is therefore a promising technology for a future linear collider. We will go through the opportunities of using plasma wakefield acceleration technology for a collider, as well as a few of the collider-specific challenges that must be addressed in order for a high-energy, high luminosity-per-power plasma wakefield collider to become a reality.
Early tests of short low group velocity and standing wave structures indicated the viability of operating X-band linacs with accelerating gradients in excess of 100 MeV/m. Conventional scaling of traveling wave traveling wave linacs with frequency sc ales the cell dimensions with l. Because Q scales as l1/2, the length of the structures scale not linearly but as l3/2 in order to preserve the attenuation through each structure. For NLC we chose not to follow this scaling from the SLAC S-band linac to its fourth harmonic at X-band. We wanted to increase the length of the structures to reduce the number of couplers and waveguide drives which can be a significant part of the cost of a microwave linac. Furthermore, scaling the iris size of the disk-loaded structures gave unacceptably high short range dipole wakefields. Consequently, we chose to go up a factor of about 5 in average group velocity and length of the structures, which increases the power fed to each structure by the same factor and decreases the short range dipole wakes by a similar factor. Unfortunately, these longer (1.8 m) structures have not performed nearly as well in high gradient tests as the short structures. We believe we have at least a partial understanding of the reason and will discuss it below. We are now studying two types of short structures with large apertures with moderately good efficiency including: 1) traveling wave structures with the group velocity lowered by going to large phase advance per period with bulges on the iris, 2) pi mode standing wave structures
Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to~60~nJ energy and 90 to~400~attosecond duration in the 30 to 120~nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.
We present methods and preliminary observations of two pulse Direct Laser Acceleration in a Laser-Driven Plasma Accelerator. This acceleration mechanism uses a second co-propagating laser pulse to overlap and further accelerate electrons in a wakefie ld bubble, increasing energy at the cost of emittance when compared to traditional laser wakefield acceleration (LWFA). To this end, we introduce a method of femtosecond scale control of time delay between two co-propagating pulses. We show energy enhancement when the separation between the two pulses approaches the bubble radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا