ﻻ يوجد ملخص باللغة العربية
Sr$_2$CuWO$_6$ is a double perovskite proposed to be at the border between two and three dimensional magnetism, with a square lattice of $S=frac{1}{2}$ Cu$^{2+}$ ions. We have used inelastic neutron scattering to investigate the spin wave excitations of the system, to find out how they evolve as a function of temperature, as well as to obtain information about the magnetic exchange interactions. We observed well defined dispersive spin wave modes at $6$~K, which partially survive above the magnetic ordering temperature, $T_N=24$~K. Linear spin wave theory is used to determine the exchange interactions revealing them to be highly two-dimensional in nature. Density functional theory calculations are presented supporting this experimental finding, which is in contrast to a previous emph{ab-initio} study of the magnetic interactions. Our analysis confirms that not the nearest neighbour, but the next nearest neighbour interactions in the tetragonal $ab$ plane are the strongest. Low incident energy measurements reveal the opening of a $0.6(1)$~meV gap below $T_N$, which suggests the presence of a very weak single ion anisotropy term in the form of an easy axis along $hat{mathbf{a}}$.
We report the observation of spin glass state in the double perovskite oxide Sr$_{2}$FeCoO$_{6}$ prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal $I 4/m$ structure with la
Sr$_2$FeOsO$_6$ is an insulating double perovskite compound which undergoes antiferromagnetic transitions at 140 K ($T_{N1}$) and 67 K ($T_{N2}$). To study the underlying electronic and magnetic interactions giving rise to this behavior we have perfo
We have prepared crystallographically ordered and disorder specimens of the double perovskite, Sr$_2$FeMoO$_6$ and investigated their magnetoresistance behaviour. The extent of ordering between the Fe and Mo sites in the two samples is determined by
The double-perovskite A$_2$BBO$_6$ with heavy transition metal ions on the ordered B sites is an important family of compounds to study the interplay between electron correlation and spin-orbit coupling (SOC). Here we prepared high-quality Sr$_2$MgRe
We formulate a superexchange theory of insulating double-perovskite compounds such as Sr$_2$FeWO$_6$. An effective spin-orbital Hamiltonian is derived in the strong coupling limit of Hubbard model for d-electrons on Fe and W ions. The relevant degree