ترغب بنشر مسار تعليمي؟ اضغط هنا

MI-Sim: A MATLAB Package for the Numerical Analysis of Microbial Ecological Interactions

138   0   0.0 ( 0 )
 نشر من قبل Nicholas Parker
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady- state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.



قيم البحث

اقرأ أيضاً

Stochasticity is an indispensable aspect of biochemical processes at the cellular level. Studies on how the noise enters and propagates in biochemical systems provided us with nontrivial insights into the origins of stochasticity, in total however th ey constitute a patchwork of different theoretical analyses. Here we present a flexible and generally applicable noise decomposition tool, that allows us to calculate contributions of individual reactions to the total variability of a systems output. With the package it is therefore possible to quantify how the noise enters and propagates in biochemical systems. We also demonstrate and exemplify using the JAK-STAT signalling pathway that it is possible to infer noise contributions resulting from individual reactions directly from experimental data. This is the first computational tool that allows to decompose noise into contributions resulting from individual reactions.
Surveys of microbial biodiversity such as the Earth Microbiome Project (EMP) and the Human Microbiome Project (HMP) have revealed robust ecological patterns across different environments. A major goal in ecology is to leverage these patterns to ident ify the ecological processes shaping microbial ecosystems. One promising approach is to use minimal models that can relate mechanistic assumptions at the microbe scale to community-level patterns. Here, we demonstrate the utility of this approach by showing that the Microbial Consumer Resource Model (MiCRM) -- a minimal model for microbial communities with resource competition, metabolic crossfeeding and stochastic colonization -- can qualitatively reproduce patterns found in survey data including compositional gradients, dissimilarity/overlap correlations, richness/harshness correlations, and nestedness of community composition. By using the MiCRM to generate synthetic data with different environmental and taxonomical structure, we show that large scale patterns in the EMP can be reproduced by considering the energetic cost of surviving in harsh environments and HMP patterns may reflect the importance of environmental filtering in shaping competition. We also show that recently discovered dissimilarity-overlap correlations in the HMP likely arise from communities that share similar environments rather than reflecting universal dynamics. We identify ecologically meaningful changes in parameters that alter or destroy each one of these patterns, suggesting new mechanistic hypotheses for further investigation. These findings highlight the promise of minimal models for microbial ecology.
Microbial electrolysis cells (MECs) employ electroactive bacteria to perform extracellular electron transfer, enabling hydrogen generation from biodegradable substrates. In previous work, we developed and analyzed a differential-algebraic equation (D AE) model for MECs. The model resembles a chemostat with ordinary differential equations (ODEs) for concentrations of substrate, microorganisms, and an extracellular mediator involved in electron transfer. There is also an algebraic constraint for electric current and hydrogen production. Our goal is to determine the outcome of competition between methanogenic archaea and electroactive bacteria, because only the latter contribute to electric current and resulting hydrogen production. We investigate asymptotic stability in two industrially releva
MPAgenomics, standing for multi-patients analysis (MPA) of genomic markers, is an R-package devoted to: (i) efficient segmentation, and (ii) genomic marker selection from multi-patient copy number and SNP data profiles. It provides wrappers from comm only used packages to facilitate their repeated (sometimes difficult) use, offering an easy-to-use pipeline for beginners in R. The segmentation of successive multiple profiles (finding losses and gains) is based on a new automatic choice of influential parameters since default ones were misleading in the original packages. Considering multiple profiles in the same time, MPAgenomics wraps efficient penalized regression methods to select relevant markers associated with a given response.
Ecological networks such as plant-pollinator systems vary systematically in space and time. This variability includes fluctuations in global network properties such as total number and intensity of interactions in the network, but also in the local p roperties of individual nodes, such as the number and intensity of species-level interactions. Fluctuations of local properties can significantly affect higher-order network features, e.g. robustness and nestedness. These fluctuations should therefore be controlled for in applications that rely on null models, including pattern detection, perturbation experiments and network reconstruction from limited observations. By contrast, most randomization methods used by ecologists treat node-level local properties as hard constraints that cannot fluctuate. Here we synthesise a set of methods based on the statistical mechanics of networks, which we illustrate with some practical examples. We illustrate how this approach can be used by experimental ecologists to study the statistical significance of network patterns and the rewiring of networks under simulated perturbations. Modelling species heterogeneity, while allowing for local fluctuations around a theoretically grounded notion of structural equilibrium, will offer a new generation of models and experiments to understand the assembly and resilience of ecological networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا