ﻻ يوجد ملخص باللغة العربية
Stochasticity is an indispensable aspect of biochemical processes at the cellular level. Studies on how the noise enters and propagates in biochemical systems provided us with nontrivial insights into the origins of stochasticity, in total however they constitute a patchwork of different theoretical analyses. Here we present a flexible and generally applicable noise decomposition tool, that allows us to calculate contributions of individual reactions to the total variability of a systems output. With the package it is therefore possible to quantify how the noise enters and propagates in biochemical systems. We also demonstrate and exemplify using the JAK-STAT signalling pathway that it is possible to infer noise contributions resulting from individual reactions directly from experimental data. This is the first computational tool that allows to decompose noise into contributions resulting from individual reactions.
The phenomena of stochasticity in biochemical processes have been intriguing life scientists for the past few decades. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. The source
We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes. A rule identifies the molecular co
RNA 3D architectures are stabilized by sophisticated networks of (non-canonical) base pair interactions, which can be conveniently encoded as multi-relational graphs and efficiently exploited by graph theoretical approaches and recent progresses in m
Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environ
Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of