ﻻ يوجد ملخص باللغة العربية
MPAgenomics, standing for multi-patients analysis (MPA) of genomic markers, is an R-package devoted to: (i) efficient segmentation, and (ii) genomic marker selection from multi-patient copy number and SNP data profiles. It provides wrappers from commonly used packages to facilitate their repeated (sometimes difficult) use, offering an easy-to-use pipeline for beginners in R. The segmentation of successive multiple profiles (finding losses and gains) is based on a new automatic choice of influential parameters since default ones were misleading in the original packages. Considering multiple profiles in the same time, MPAgenomics wraps efficient penalized regression methods to select relevant markers associated with a given response.
Motivation: We introduce TRONCO (TRanslational ONCOlogy), an open-source R package that implements the state-of-the-art algorithms for the inference of cancer progression models from (epi)genomic mutational profiles. TRONCO can be used to extract pop
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th
This paper introduces the R package sgmcmc; which can be used for Bayesian inference on problems with large datasets using stochastic gradient Markov chain Monte Carlo (SGMCMC). Traditional Markov chain Monte Carlo (MCMC) methods, such as Metropolis-
This paper is dedicated to the R package FMM which implements a novel approach to describe rhythmic patterns in oscillatory signals. The frequency modulated Mobius (FMM) model is defined as a parametric signal plus a gaussian noise, where the signal
Process data refer to data recorded in the log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents response processes of solving the items. Process data analysis aims at enhancing educatio