ﻻ يوجد ملخص باللغة العربية
The scope of this article is to review the state-of-the-art in the field of confined electron systems generated at the bare surfaces of transition metal oxides (TMOs). This scientific field is a prime example of a domain where two-dimensional physics and photoemission-based spectroscopic techniques have together set up the development of the story. The discovery of a high-mobility two-dimensional electron system (2DES) at interfaces of transition metal oxides has attracted an immense scientific interest due to new opportunities opened in the emerging field of oxide electronics. The subsequent paradigm shift from interfaces to the bare surfaces of TMOs made the confined electron system accessible to surface-sensitive spectroscopic techniques and this new era is the focus of the present article. We describe how results by means of Angle-Resolved Photoemission Spectroscopy (ARPES) establish the presence of confined electron carriers at the bare surface of SrTiO$_{3}$(100), which exhibit complex physics phenomena such as orbital ordering, electron-phonon interactions and spin splitting. The key element behind the 2DES generation is oxygen vacancies. Moreover, we review the experimental evidence on the generation of 2DESs on surfaces with different orientation, as well as on different TMO substrates. The electronic structure of the confined electron system responds to such changes, thereby providing external means for engineering its properties. Finally, we identify new directions for future research by introducing a device-friendly fabrication protocol for the generation of 2DESs on TMO surfaces.
Conducting and magnetic properties of a material often change in some confined geometries. However, a situation where a non-magnetic semiconductor becomes both metallic and magnetic at the surface is quite rare, and to the best of our knowledge has n
We show that a class of compounds with $I$4/$mcm$ crystalline symmetry hosts three-dimensional semi-Dirac fermions. Unlike the known two-dimensional semi-Dirac points, the degeneracy of these three-dimensional semi-Dirac points is not lifted by spin-
Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin
We have performed systematic tight-binding (TB) analyses of the angle-resolved photoemission spectroscopy (ARPES) spectra of transition-metal (TM) oxides A$M$O$_3$ ($M=$ Ti, V, Mn, and Fe) with the perovskite-type structure and compared the obtained
During the last decade, ab initio methods to calculate electronic structure of materials based on hybrid functionals are increasingly becoming widely popular. In this Letter, we show that, in the case of small gap transition metal oxides, such as VO2