ﻻ يوجد ملخص باللغة العربية
We have performed systematic tight-binding (TB) analyses of the angle-resolved photoemission spectroscopy (ARPES) spectra of transition-metal (TM) oxides A$M$O$_3$ ($M=$ Ti, V, Mn, and Fe) with the perovskite-type structure and compared the obtained parameters with those obtained from configuration-interaction (CI) cluster-model analyses of photoemission spectra. The values of $epsilon_d-epsilon_p$ from ARPES are found to be similar to the charge-transfer energy $Delta$ from O $2p$ orbitals to empty TM 3d orbitals and much larger than $Delta-U/2$ ($U$: on-site Coulomb energy) expected for Mott-Hubbard-type compounds including SrVO$_3$. $epsilon_d-epsilon_p$ values from {it ab initio} band-structure calculations show similar behaviors to those from ARPES. The values of the $p-d$ transfer integrals to describe the global electronic structure are found to be similar in all the estimates, whereas additional narrowing beyond the TB description occurs in the ARPES spectra of the $d$ band.
High mobility two-dimensional electron gases (2DEGs) underpin todays silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DEGs are usually created by engineering band offsets and charge transfer a
We show that a class of compounds with $I$4/$mcm$ crystalline symmetry hosts three-dimensional semi-Dirac fermions. Unlike the known two-dimensional semi-Dirac points, the degeneracy of these three-dimensional semi-Dirac points is not lifted by spin-
Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin
During the last decade, ab initio methods to calculate electronic structure of materials based on hybrid functionals are increasingly becoming widely popular. In this Letter, we show that, in the case of small gap transition metal oxides, such as VO2
The scope of this article is to review the state-of-the-art in the field of confined electron systems generated at the bare surfaces of transition metal oxides (TMOs). This scientific field is a prime example of a domain where two-dimensional physics