ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic 2D electron liquid at the surface of Heusler semiconductors

166   0   0.0 ( 0 )
 نشر من قبل Yaroslav Kvashnin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conducting and magnetic properties of a material often change in some confined geometries. However, a situation where a non-magnetic semiconductor becomes both metallic and magnetic at the surface is quite rare, and to the best of our knowledge has never been observed in experiment. In this work, we employ first-principles electronic structure theory to predict that such a peculiar magnetic state emerges in a family of quaternary Heusler compounds. We investigate magnetic and electronic properties of CoCrTiP, FeMnTiP and CoMnVAl. For the latter material, we also analyse the magnetic exchange interactions and use them for parametrizing an effective spin Hamiltonian. According to our results, magnetism in this material should persist at temperatures at least as high as 155 K.



قيم البحث

اقرأ أيضاً

The scope of this article is to review the state-of-the-art in the field of confined electron systems generated at the bare surfaces of transition metal oxides (TMOs). This scientific field is a prime example of a domain where two-dimensional physics and photoemission-based spectroscopic techniques have together set up the development of the story. The discovery of a high-mobility two-dimensional electron system (2DES) at interfaces of transition metal oxides has attracted an immense scientific interest due to new opportunities opened in the emerging field of oxide electronics. The subsequent paradigm shift from interfaces to the bare surfaces of TMOs made the confined electron system accessible to surface-sensitive spectroscopic techniques and this new era is the focus of the present article. We describe how results by means of Angle-Resolved Photoemission Spectroscopy (ARPES) establish the presence of confined electron carriers at the bare surface of SrTiO$_{3}$(100), which exhibit complex physics phenomena such as orbital ordering, electron-phonon interactions and spin splitting. The key element behind the 2DES generation is oxygen vacancies. Moreover, we review the experimental evidence on the generation of 2DESs on surfaces with different orientation, as well as on different TMO substrates. The electronic structure of the confined electron system responds to such changes, thereby providing external means for engineering its properties. Finally, we identify new directions for future research by introducing a device-friendly fabrication protocol for the generation of 2DESs on TMO surfaces.
We reinvestigate the putative giant spin splitting at the surface of SrTiO$_3$ reported by Santander-Syro $et~al.$ [Nature Mat. 13, 1085 (2014)]. Our spin- and angle-resolved photoemission experiments on (001) oriented surfaces supporting a two-dimen sional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is fully consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
The discovery that the interface between two band gap insulators LaAlO3 and SrTiO3 is highly conducting has raised an enormous interest in the field of oxide electronics. The LAlO3/SrTiO3 interface can be tuned using an electric field and switched fr om a superconducting to an insulating state. Conducting paths in an insulating background can be written applying a voltage with the tip of an atomic force microscope, creating great promise for the development of a new generation of nanoscale electronic devices. However, the mechanism for interface conductivity in LaAlO3/SrTiO3 has remained elusive. The theoretical explanation based on an intrinsic charge transfer (electronic reconstruction) has been strongly challenged by alternative descriptions based on point defects. In this work, thanks to modern aberration-corrected electron probes with atomic-scale spatial resolution, interfacial charge and atomic displacements originating the electric field within the system can be simultaneously measured, yielding unprecedented experimental evidence in favor of an intrinsic electronic reconstruction.
We revealed the electrical transport through surface ferromagnetic states of a nonmagnetic metal PdCoO2. Electronic reconstruction at the Pd-terminated surface of PdCoO2 induces Stoner-like ferromagnetic states, which could lead to spin-related pheno mena among the highly conducting electrons in PdCoO2. Fabricating a series of nanometer-thick PdCoO2 thin films, we detected a surface-magnetization-driven anomalous Hall effect via systematic thickness- and termination-dependent measurements. Besides, we discuss that finite magnetic moments in electron doped CoO2 triangular lattices may have given rise to additional unconventional Hall resistance.
Co2FeAl (CFA) nanoparticles (NPs) of different sizes were synthesized by chemical route. The effect of the size of NPs upon the structure and magnetization compared to its bulk counterpart was investigated. The structure and composition were determin ed from X-ray diffraction (XRD) and electron microscopy. XRD analysis shows that the samples are having single (A2-type) disordered phase. Magnetization measurements suggest that the samples are soft ferromagnetic in nature with very low coercivity. Enhanced magnetic properties like saturation magnetization, coercive force, retentivity, and Curie-temperature are observed with a decrease in particle size. The effect of particle size on hysteresis losses is also discussed. The smallest particles of size 16 nm exhibited the highest saturation magnetization and transition temperature of 180.73 emu/g and 1261 K, respectively. The origin of enhancement in the magnetization of Co2FeAl nano-alloy is attributed to the strong Co-Co exchange interaction due to disorder present in the systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا