ﻻ يوجد ملخص باللغة العربية
The properties of ground state of spin-$frac{1}{2}$ kagome antiferromagnetic Heisenberg (KAFH) model have attracted considerable interest in the past few decades, and recent numerical simulations reported a spin liquid phase. The nature of the spin liquid phase remains unclear. For instance, the interplay between symmetries and $Z_2$ topological order leads to different types of $Z_2$ spin liquid phases. In this paper, we develop a numerical simulation method based on symmetric projected entangled-pair states (PEPS), which is generally applicable to strongly correlated model systems in two spatial dimensions. We then apply this method to study the nature of the ground state of the KAFH model. Our results are consistent with that the ground state is a $U(1)$ Dirac spin liquid rather than a $Z_2$ spin liquid.
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the antiferromagnetic first ($J_1$) and second ($J_2$) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we fin
We study the zero-temperature phase diagram of the spin-$frac{1}{2}$ Heisenberg model with breathing anisotropy (i.e., with different coupling strength on the upward and downward triangles) on the kagome lattice. Our study relies on large scale tenso
We report $^{35}$Cl NMR, ESR, $mu$SR and specific heat measurements on the $S=1/2$ frustrated kagome magnet kapellasite, $alpha-$Cu$_3$Zn(OH)$_6$Cl$_2$, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our
We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, thi
We present a multiloop pseudofermion functional renormalization group (pffRG) approach to quantum spin systems. As a test case, we study the spin-$tfrac{1}{2}$ Heisenberg model on the kagome lattice, a prime example of a geometrically frustrated magn