ﻻ يوجد ملخص باللغة العربية
We study the zero-temperature phase diagram of the spin-$frac{1}{2}$ Heisenberg model with breathing anisotropy (i.e., with different coupling strength on the upward and downward triangles) on the kagome lattice. Our study relies on large scale tensor network simulations based on infinite projected entangled-pair state and infinite projected entangled-simplex state methods adapted to the kagome lattice. Our energy analysis suggests that the U(1) algebraic quantum spin-liquid (QSL) ground-state of the isotropic Heisenberg model is stable up to very large breathing anisotropy until it breaks down to a critical lattice-nematic phase that breaks rotational symmetry in real space through a first-order quantum phase transition. Our results also provide further insight into the recent experiment on vanadium oxyfluoride compounds which has been shown to be relevant platforms for realizing QSL in the presence of breathing anisotropy.
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A des
We investigate the spin-1/2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e. with weak and strong triangular units), constructing an improved simplex Resonating Valence Bond (RVB) ansatz by successive applications (up
The nature of the ground state of the spin $S=1/2$ Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings $J_{vartriangle}$ and $J_{triangledown}$ within elementary up- and down-pointi
The spin-$frac{1}{2}$ kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu$_{3}$V$_{2}$O$_{8}$(OD)$_{2}$, a ful
We clarify the existence of several magnetization plateaux for the kagome $S=1/2$ antiferromagnetic Heisenberg model in a magnetic field. Using approximate or exact localized magnon eigenstates, we are able to describe in a similar manner the plateau