ترغب بنشر مسار تعليمي؟ اضغط هنا

Young and turbulent: the early life of massive galaxy progenitors

78   0   0.0 ( 0 )
 نشر من قبل Davide Fiacconi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Davide Fiacconi




اسأل ChatGPT حول البحث

We present results from the Ponos simulation suite on the early evolution of a massive, $M_{rm vir}(z=0)=1.2times 10^{13}$ M$_{odot}$ galaxy. At $zgtrsim6$, before feedback from a central supermassive black hole becomes dominant, the main galaxy has a stellar mass $sim 2times 10^{9}$ M$_{odot}$ and a star formation rate $sim 20$ M$_{odot}$ yr$^{-1}$. The galaxy sits near the expected main sequence of star-forming galaxies at those redshifts, and resembles moderately star-forming systems observed at $z>5$. The high specific star formation rate results in vigorous heating and stirring of the gas by supernovae feedback, and the galaxy develops a thick and turbulent disc, with gas velocity dispersion $sim 40$ km s$^{-1}$, rotation to dispersion ratio $sim 2$, and with a significant amount of gas at $sim 10^5$ K. The Toomre parameter always exceeds the critical value for gravito-turbulence, $Qsim 1.5-2$, mainly due to the contribution of warm/hot gas inside the disc. Without feedback, a nearly gravito-turbulent regime establishes with similar gas velocity dispersion and lower $Q$. We propose that the hot and turbulent disc regime seen in our simulations, unlike the cold and turbulent gravito-turbulent regime of massive clumpy disc galaxies at $zsim 1-2$, is a fundamental characterisation of main sequence galaxies at $zgtrsim 6$, as they can sustain star formation rates comparable to those of low-mass starbursts at $z=0$. This results in no sustained coherent gas inflows through the disc, and in fluctuating and anisotropic mass transport, possibly postponing the assembly of the bulge and causing the initial feeding of the central black hole to be highly intermittent.

قيم البحث

اقرأ أيضاً

The progenitors of high-mass stars and clusters are still challenging to recognise. Only unbiased surveys, sensitive to compact regions of high dust column density, can unambiguously reveal such a small population of particularly massive and cold clu mps. Here we study a flux limited sample of compact sources from the ATLASGAL survey to identify a sample of candidate progenitors of massive clusters in the inner Galaxy. Sensitive mid-infrared data at 21-24 $mu$m from the WISE and MIPSGAL surveys were explored to search for embedded objects, and complementary spectroscopic data were used to investigate their stability and star formation activity. Based on such ancillary data we identify an unbiased sample of infrared-quiet massive clumps in the Galaxy that potentially represent the earliest stages of massive cluster formation. An important fraction of this sample consists of sources that have not been studied in detail before. Comparing their properties to clumps hosting more evolved embedded objects, we find that they exhibit similar physical properties in terms of mass and size, suggesting that infrared-quiet massive clumps are not only capable of forming high-mass stars, but likely also follow a single evolutionary track leading to the formation of massive clusters. The majority of the sources are not in virial-equilibrium, suggesting collapse on the clump scale. This is in line with the low number of infrared-quiet massive clumps and earlier findings that star formation, in particular for high-mass objects is a fast, dynamic process. We propose a scenario in which massive clumps start to fragment and collapse before their final mass is accumulated indicating that strong self-gravity and global collapse is needed to build up rich clusters and the most massive stars.
Whilst young massive clusters (YMCs; $M$ $gtrsim$ 10$^{4}$ M$_{odot}$, age $lesssim$ 100 Myr) have been identified in significant numbers, their progenitor gas clouds have eluded detection. Recently, four extreme molecular clouds residing within 200 pc of the Galactic centre have been identified as having the properties thought necessary to form YMCs. Here we utilise far-IR continuum data from the Herschel Infrared Galactic Plane Survey (HiGAL) and millimetre spectral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90) to determine their global physical and kinematic structure. We derive their masses, dust temperatures and radii and use virial analysis to conclude that they are all likely gravitationally bound -- confirming that they are likely YMC progenitors. We then compare the density profiles of these clouds to those of the gas and stellar components of the Sagittarius B2 Main and North proto-clusters and the stellar distribution of the Arches YMC. We find that even in these clouds -- the most massive and dense quiescent clouds in the Galaxy -- the gas is not compact enough to form an Arches-like ($M$ = 2x10$^{4}$ M$_{odot}$, R$_{eff}$ = 0.4 pc) stellar distribution. Further dynamical processes would be required to condense the resultant population, indicating that the mass becomes more centrally concentrated as the (proto)-cluster evolves. These results suggest that YMC formation may proceed hierarchically rather than through monolithic collapse.
80 - A. Lapi 2018
[ABRIDGED] We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs), that encompasses their high-$z$ star-forming progenitors, their high-$z$ quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises: biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star-formation takes place and most of the stellar mass is accumulated; ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations, to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size $R_e$, on the ratio $v/sigma$ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum $j_star$ of the stellar component; we find good consistency with the available multi-band data in average values and dispersion, both for local ETGs and for their $zsim 1-2$ star-forming and quiescent progenitors.
114 - C.G. Few , S. Courty , B.K. Gibson 2014
We trace the formation and advection of several elements within a cosmological adaptive mesh refinement simulation of an L* galaxy. We use nine realisations of the same initial conditions with different stellar Initial Mass Functions (IMFs), mass lim its for type-II and type-Ia supernovae (SNII, SNIa) and stellar lifetimes to constrain these sub-grid phenomena. Our code includes self-gravity, hydrodynamics, star formation, radiative cooling and feedback from multiple sources within a cosmological framework. Under our assumptions of nucleosynthesis we find that SNII with progenitor masses of up to 100 Msun are required to match low metallicity gas oxygen abundances. Tardy SNIa are necessary to reproduce the classical chemical evolution knee in [O/Fe]-[Fe/H]: more prompt SNIa delayed time distributions do not reproduce this feature. Within our framework of hydrodynamical mixing of metals and galaxy mergers we find that chemical evolution is sensitive to the shape of the IMF and that there exists a degeneracy with the mass range of SNII. We look at the abundance plane and present the properties of different regions of the plot, noting the distinct chemical properties of satellites and a series of nested discs that have greater velocity dispersions, are more alpha-rich and metal poor with age.
We have made a serendipitous discovery of a massive cD galaxy at z=1.096 in a candidate rich cluster in the HUDF area of GOODS-South. This brightest cluster galaxy is the most distant cD galaxy confirmed to date. Ultra-deep HST/WFC3 images reveal an extended envelope starting from ~10 kpc and reaching ~70 kpc in radius along the semi-major axis. The spectral energy distributions indicate that both its inner component and outer envelope are composed of an old, passively-evolving stellar population. The cD galaxy lies on the same mass-size relation as the bulk of quiescent galaxies at similar redshifts. The cD galaxy has a higher stellar mass surface density but a similar velocity dispersion to those of more-massive, nearby cDs. If the cD galaxy is one of the progenitors of todays more massive cDs, its size and stellar mass have had to increase on average by factors of $3.4pm1.1$ and $3.3pm1.3$ over the past ~8 Gyrs, respectively. Such increases in size and stellar mass without being accompanied by significant increases in velocity dispersion are consistent with evolutionary scenarios driven by both major and minor dry mergers. If such cD envelopes originate from dry mergers, our discovery of even one example proves that some BCGs entered the dry merger phase at epochs earlier than z=1. Our data match theoretical models which predict that the continuance of dry mergers at z<1 can result in structures similar to those of massive cD galaxies seen today. Moreover, our discovery is a surprise given that the extreme depth of the HUDF is essential to reveal such an extended cD envelope at z>1 and, yet, the HUDF covers only a minuscule region of sky. Adding that cDs are rare, Our serendipitous discovery hints that such cDs may be more common than expected. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا