ﻻ يوجد ملخص باللغة العربية
[ABRIDGED] We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs), that encompasses their high-$z$ star-forming progenitors, their high-$z$ quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises: biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star-formation takes place and most of the stellar mass is accumulated; ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations, to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size $R_e$, on the ratio $v/sigma$ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum $j_star$ of the stellar component; we find good consistency with the available multi-band data in average values and dispersion, both for local ETGs and for their $zsim 1-2$ star-forming and quiescent progenitors.
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of $M_{*} > 6.3 times 10^{10} M_{odot}$ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decre
The dramatic size evolution of early-type galaxies from z ~ 2 to 0 poses a new challenge in the theory of galaxy formation, which may not be explained by the standard picture. It is shown here that the size evolution can be explained if the non-baryo
[abridged] This work aims to observationally investigate the history of size growth of early-type galaxies and how the growth depends on cosmic epoch and the mass of the halo in which they are embedded. We carried out a photometric and structural ana
We investigate in detail 13 early-type field galaxies with 0.2<z<0.7 drawn from the FORS Deep Field. Since the majority (9 galaxies) is at z~0.4, we compare the field galaxies to 22 members of three rich clusters with z=0.37 to explore possible varia
The characteristic size of early-type galaxies (ETGs) of given stellar mass is observed to increase significantly with cosmic time, from redshift z>2 to the present. A popular explanation for this size evolution is that ETGs grow through dissipationl