ﻻ يوجد ملخص باللغة العربية
We trace the formation and advection of several elements within a cosmological adaptive mesh refinement simulation of an L* galaxy. We use nine realisations of the same initial conditions with different stellar Initial Mass Functions (IMFs), mass limits for type-II and type-Ia supernovae (SNII, SNIa) and stellar lifetimes to constrain these sub-grid phenomena. Our code includes self-gravity, hydrodynamics, star formation, radiative cooling and feedback from multiple sources within a cosmological framework. Under our assumptions of nucleosynthesis we find that SNII with progenitor masses of up to 100 Msun are required to match low metallicity gas oxygen abundances. Tardy SNIa are necessary to reproduce the classical chemical evolution knee in [O/Fe]-[Fe/H]: more prompt SNIa delayed time distributions do not reproduce this feature. Within our framework of hydrodynamical mixing of metals and galaxy mergers we find that chemical evolution is sensitive to the shape of the IMF and that there exists a degeneracy with the mass range of SNII. We look at the abundance plane and present the properties of different regions of the plot, noting the distinct chemical properties of satellites and a series of nested discs that have greater velocity dispersions, are more alpha-rich and metal poor with age.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp
Massive early-type galaxies commonly have gas discs which are kinematically misaligned with the stellar component. These discs feel a torque from the stars and the angular momentum vectors are expected to align quickly. We present results on the evol
Within a cosmological hydrodynamical simulation, we form a disc galaxy with sub- components which can be assigned to a thin stellar disc, thick disk, and a low mass stellar halo via a chemical decomposition. The thin and thick disc populations so sel
We study the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project. In the simulation, stars older than 6 Gyr were form
We use multi-band imagery data from the Sloan Digital Sky Survey (SDSS) to measure projected distances of 302 supernova type Ia (SNIa) from the centre of their host galaxies, normalized to the galaxys brightness scale length, with a Bayesian approach