ﻻ يوجد ملخص باللغة العربية
Parkers magnetostatic theorem extended to astrophysical magnetofluids with large magnetic Reynolds number supports ceaseless regeneration of current sheets and hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux-rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process, including onset and ascent of the rope, reconnection locations and the associated topology of the magnetic field lines, agrees with observations, and thus substantiates physical realisability of the advocated mechanism.
Most 1d hydrodynamic models of plasma confined to magnetic flux tubes assume circular cross-section of these tubes. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not in general maintain the sam
Two of the most widely observed and yet most puzzling features of the Suns magnetic field are coronal loops that are smooth and laminar and prominences/filaments that are strongly sheared. These two features would seem to be quite unrelated in that t
We use data at 131, 171, and 304 A from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than
It remains unclear how solar flares are triggered and in what conditions they can be eruptive with coronal mass ejections. Magnetic flux ropes (MFRs) has been suggested as the central magnetic structure of solar eruptions, and their ideal instabiliti
Magnetic flux ropes (MFRs) are thought to be the central structure of solar eruptions, and their ideal MHD instabilities can trigger the eruption. Here we performed a study of all the MFR configurations that lead to major solar flares, either eruptiv