ﻻ يوجد ملخص باللغة العربية
Two of the most widely observed and yet most puzzling features of the Suns magnetic field are coronal loops that are smooth and laminar and prominences/filaments that are strongly sheared. These two features would seem to be quite unrelated in that the loops are near their minimum-energy current-free state, whereas filaments are regions of high magnetic stress and intense electric currents. We argue that, in fact, these two features are inextricably linked in that both are due to a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a citet{Parker72} corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: 1) in agreement with the helicity condensation model of citet{Antiochos13}, the inverse cascade of helicity by magnetic reconnection results in the formation of prominences/filaments localized about polarity inversion lines (PILs); 2) this same process removes most structure from the rest of the corona, resulting in smooth and laminar coronal loops; 3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and 4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.
By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Suns corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningfu
Two of the most important features of the solar atmosphere are its hot, smooth coronal loops and the concentrations of magnetic shear, known as filament channels, that reside above photospheric polarity inversion lines (PILs). The shear observed in f
Parkers magnetostatic theorem extended to astrophysical magnetofluids with large magnetic Reynolds number supports ceaseless regeneration of current sheets and hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is p
One of the greatest challenges in solar physics is understanding the heating of the Suns corona. Most theories for coronal heating postulate that free energy in the form of magnetic twist/stress is injected by the photosphere into the corona where th
Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities h