ترغب بنشر مسار تعليمي؟ اضغط هنا

Active locking and entanglement in type II optical parametric oscillators

66   0   0.0 ( 0 )
 نشر من قبل Carlos Navarrete-Benlloch
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase-difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly squeezed vacuum state.

قيم البحث

اقرأ أيضاً

We propose a scheme to modulate the entanglement between two oscillators separated in space via the squeezing cavity field generated by the optical parametric amplifier instead of injecting the squeezing field directly with the assistance of Coulomb interaction. We show that the Coulomb interaction between the oscillators is the essential reason for the existence of entanglement. Due to the gain of the optical parametric amplifier and the phase of the pump driving the optical parametric amplifier can simultaneously modulate the squeezing cavity field, the radiation pressure interaction between the cavity field and the oscillator is modulated accordingly. We find that there is competing effect between the radiation pressure interaction and the Coulomb interaction for the oscillator which these two interactions act on simultaneously. Therefore, the modulation of entanglement can be achieved with the assistance of Coulomb interaction. The results of numerical simulation show that the present scheme has stronger robustness against the temperature of environment compared with previous schemes in experimentally feasible regimes.
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic e quations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
81 - Giuseppe Patera 2009
Quantum models for synchronously pumped type I optical parametric oscillators (SPOPO) are presented. The study of the dynamics of SPOPOs, which typically involves millions of coupled signal longitudinal modes, is significantly simplified when one con siders the ?supermodes?, which are independent linear superpositions of all the signal modes diagonalizing the parametric interaction. In terms of these supermodes the SPOPO dynamics becomes that of about a hundred of independent, single mode degenerate OPOs, each of them being a squeezer. One derives a general expression for the squeezing spectrum measured in a balanced homodyne detection experiment, valid for any temporal shape of the local oscillator. Realistic cases are then studied using both analytical and numerical methods: the oscillation threshold is derived, and the spectral and temporal shapes of the squeezed supermodes are characterized.
We theoretically investigate the generation of two entangled beams of light in the process of single-pass type-I noncollinear frequency degenerate parametric downconversion with an ultrashort pulsed pump. We find the spatio-temporal squeezing eigenmo des and the corresponding squeezing eigenvalues of the generated field both numerically and analytically. The analytical solution is obtained by modeling the joint spectral amplitude of the field by a Gaussian function in curvilinear coordinates. We show that this method is highly efficient and is in a good agreement with the numerical solution. We also reveal that when the total bandwidth of the generated beams is sufficiently high, the modal functions cannot be factored into a spatial and a temporal parts, but exhibit a spatio-temporal coupling, whose strength can be increased by shortening the pump.
Non-Gaussian continuous variable states play a central role both in the foundations of quantum theory and for emergent quantum technologies. In particular, cat states, i.e., two-component macroscopic quantum superpositions, embody quantum coherence i n an accessible way and can be harnessed for fundamental tests and quantum information tasks alike. Degenerate optical parametric oscillators can naturally produce single-mode cat states and thus represent a promising platform for their realization and harnessing. We show that a dissipative coupling between degenerate optical parametric oscillators extends this to two-mode entangled cat states, i.e., two-mode entangled cat states are naturally produced under such dissipative coupling. While overcoming single-photon loss still represents a major challenge towards the realization of sufficiently pure single-mode cat states in degenerate optical parametric oscillators, we show that the generation of two-mode entangled cat states under such dissipative coupling can then be achieved without additional hurdles. We numerically explore the parameter regime for the successful generation of transient two-mode entangled cat states in two dissipatively coupled degenerate optical parametric oscillators. To certify the cat-state entanglement, we employ a tailored, variance-based entanglement criterion, which can robustly detect cat-state entanglement under realistic conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا