ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulation of entanglement between two oscillators separated in space with an optical parametric amplifier

61   0   0.0 ( 0 )
 نشر من قبل Hong-Fu Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme to modulate the entanglement between two oscillators separated in space via the squeezing cavity field generated by the optical parametric amplifier instead of injecting the squeezing field directly with the assistance of Coulomb interaction. We show that the Coulomb interaction between the oscillators is the essential reason for the existence of entanglement. Due to the gain of the optical parametric amplifier and the phase of the pump driving the optical parametric amplifier can simultaneously modulate the squeezing cavity field, the radiation pressure interaction between the cavity field and the oscillator is modulated accordingly. We find that there is competing effect between the radiation pressure interaction and the Coulomb interaction for the oscillator which these two interactions act on simultaneously. Therefore, the modulation of entanglement can be achieved with the assistance of Coulomb interaction. The results of numerical simulation show that the present scheme has stronger robustness against the temperature of environment compared with previous schemes in experimentally feasible regimes.



قيم البحث

اقرأ أيضاً

We theoretically investigate the generation of two entangled beams of light in the process of single-pass type-I noncollinear frequency degenerate parametric downconversion with an ultrashort pulsed pump. We find the spatio-temporal squeezing eigenmo des and the corresponding squeezing eigenvalues of the generated field both numerically and analytically. The analytical solution is obtained by modeling the joint spectral amplitude of the field by a Gaussian function in curvilinear coordinates. We show that this method is highly efficient and is in a good agreement with the numerical solution. We also reveal that when the total bandwidth of the generated beams is sufficiently high, the modal functions cannot be factored into a spatial and a temporal parts, but exhibit a spatio-temporal coupling, whose strength can be increased by shortening the pump.
Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variabl e entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase-difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly squeezed vacuum state.
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks. Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm and cold atomic vapours, individual atoms and ions, and defects in solid-state systems. Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres. The entangled quantum state is distributed by an optical field at a designed wavelength near 1550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
Cavity optomechanical system involving an optical parametric amplifier (OPA) can exhibit rich classical and quantum dynamical behaviors. By simply modulating the frequency of the laser pumping the OPA, we find two interesting parameter regimes, with one of them enabling to study quantum-classical correspondence in system dynamics, while there exist no classical counterparts of the quantum features for the other. For the former regime, as the parametric gain of OPA increases to a critical value, the classical dynamics of the optical or mechanical modes can experience a transition from the regular periodic oscillation to period-doubling motion, in which cases the light-mechanical entanglement can be well studied by the logarithm negativity and can manifest the dynamical transition in the classical nonlinear dynamics. Moreover, the optomechanical entanglement shows a second-order transition characteristic at the critical parametric gain. For the latter regime, the kind of normal mode splitting comes up in the laser detuning dependence of optomechanical entanglement, which is induced by the squeezing of the optical and mechanical hybrid modes and finds no classical correspondence. The OPA assisted optomechanical systems therefore offer a simple way to study and exploit quantum manifestations of classical nonlinear dynamics.
116 - Yu Wang , Heng Shen , Xiaoli Jin 2010
We experimentally demonstrated that the quantum correlations of amplitude and phase quadratures between signal and idler beams produced from a non-degenerate optical parametric amplifier (NOPA) can be significantly improved by using a mode cleaner in the pump field and reducing the phase fluctuations in phase locking systems. Based on the two technical improvements the quantum entanglement measured with a two-mode homodyne detector is enhanced from ~ 4 dB to ~ 6 dB below the quantum noise limit using the same NOPA and nonlinear crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا