ﻻ يوجد ملخص باللغة العربية
Non-Gaussian continuous variable states play a central role both in the foundations of quantum theory and for emergent quantum technologies. In particular, cat states, i.e., two-component macroscopic quantum superpositions, embody quantum coherence in an accessible way and can be harnessed for fundamental tests and quantum information tasks alike. Degenerate optical parametric oscillators can naturally produce single-mode cat states and thus represent a promising platform for their realization and harnessing. We show that a dissipative coupling between degenerate optical parametric oscillators extends this to two-mode entangled cat states, i.e., two-mode entangled cat states are naturally produced under such dissipative coupling. While overcoming single-photon loss still represents a major challenge towards the realization of sufficiently pure single-mode cat states in degenerate optical parametric oscillators, we show that the generation of two-mode entangled cat states under such dissipative coupling can then be achieved without additional hurdles. We numerically explore the parameter regime for the successful generation of transient two-mode entangled cat states in two dissipatively coupled degenerate optical parametric oscillators. To certify the cat-state entanglement, we employ a tailored, variance-based entanglement criterion, which can robustly detect cat-state entanglement under realistic conditions.
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic e
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process
In this Letter, we demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by parametrically pumping a multimode superconducting cavity. By combining different pump frequencies, applied s
The paradigm of Schr{o}dingers cat illustrates how quantum states preclude the assignment of definite properties to a macroscopic object (realism). In this work we develop a method to investigate the indefiniteness of cat states using currently avail