ﻻ يوجد ملخص باللغة العربية
Solid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages is achieved. As miniaturization continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form rectifying junctions fails and heterojunction formation becomes extremely difficult. Here it is shown there is no need to introduce dopant atoms nor is the formation of a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved for the first time solely by manipulation of quantum confinement in approximately 2 nanometer thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this new quantum approach enables room temperature operation.
Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity d
We demonstrate an enhancement of the spin-orbit coupling in silicon (Si) thin films by doping with bismuth (Bi), a heavy metal, using ion implantation. Quantum corrections to conductance at low temperature in phosphorous-doped Si before and after Bi
Intrinsically broken symmetries in the bulk of topological insulators (TIs) are manifested in their surface states. In spite of particle-hole asymmetry in TIs, it has often been assumed that their surface states are characterized by a particle-hole s
The extraordinary properties of two dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in transition metal dichalcogenides MX2 (M = Mo or W, X = S, Se) monolayers, highlight the crucial
A thin film technology compatible with multilayer device fabrication is critical for exploring the potential of the 39-K superconductor magnesium diboride for superconducting electronics. Using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) proc