ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle-hole asymmetry and quantum confinement effects on the magneto-optical response of topological insulator thin-films

71   0   0.0 ( 0 )
 نشر من قبل Mahmoud M. Asmar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intrinsically broken symmetries in the bulk of topological insulators (TIs) are manifested in their surface states. In spite of particle-hole asymmetry in TIs, it has often been assumed that their surface states are characterized by a particle-hole symmetric Dirac energy dispersion. In this work we demonstrate that the effect of particle-hole asymmetry is essential to correctly describe the energy spectrum and the magneto-optical response in TIs thin-films. In thin-films of TIs with a substantial degree of particle-hole symmetry breaking, such as Sb$_2$Te$_3$, the longitudinal optical conductivity displays absorption peaks arising from optical transitions between bulk and surface Landau levels for low photon energies. The transition energies between the bulk and surface Landau levels exhibit clearly discernable signatures from those between surface Landau levels due to their distinct magnetic field dependence. Bulk contributions to the magneto-optical conductivity in a TI thin-film are enhanced via one type of doping while being suppressed by the other. This asymmetric dependence on type of doping aids in revealing the particle-hole asymmetry in TI thin-films.

قيم البحث

اقرأ أيضاً

Thin films of topological insulators (TI) attract large attention because of expected topological effects from the inter-surface hybridization of Dirac points. However, these effects may be depleted by unexpectedly large energy smearing $Gamma$ of su rface Dirac points by the random potential of abundant Coulomb impurities. We show that in a typical TI film with large dielectric constant $sim 50$ sandwiched between two low dielectric constant layers, the Rytova-Chaplik-Entin-Keldysh modification of the Coulomb potential of a charge impurity allows a larger number of the film impurities to contribute to $Gamma$. As a result, $Gamma$ is large and independent of the TI film thickness $d$ for $d > 5$ nm. In thinner films $Gamma$ grows with decreasing $d$ due to reduction of screening by the hybridization gap. We study the surface conductivity away from the neutrality point and at the neutrality point. In the latter case, we find the maximum TI film thickness at which the hybridization gap is still able to make a TI film insulating and allow observation of the quantum spin Hall effect, $d_{max} sim 7$ nm.
When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here, via combining magneto-infrared spectroscopy with theoret ical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared to the case without e-h asymmetry, the SSs now bear not only a band asymmetry as that in the bulk but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap up to 70%. Our results signify the importance of e-h asymmetry in band engineering of TIs in the thin film limit.
We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla u p to 60 Tesla. We demonstrate that the strong linear-like MR at high field can be well understood as the weak antilocalization phenomena described by Hikami-Larkin-Nagaoka theory. Our analysis suggests that in our system, a topological insulator, the elastic scattering time can be longer than the spin-orbit scattering time. We briefly discuss our results in the context of Dirac Fermion physics and quantum linear magnetoresistance.
The effect that dipole-dipole interactions have on the magneto-optical (MO) properties of magnetoplasmonic dimers is theoretically studied. The specific plasmonic versus magnetoplasmonic nature of the dimers metallic components and their specific loc ation within the dimer plays a crucial role on the determination of these properties. We find that it is possible to generate an induced MO activity in a purely plasmonic component, even larger than that of the MO one, therefore dominating the overall MO spectral dependence of the system. Adequate stacking of these components may allow obtaining, for specific spectral regions, larger MO activities in systems with reduced amount of MO metal and therefore with lower optical losses. Theoretical results are contrasted and confirmed with experiments for selected structures.
As a model for describing finite-size effects in topological insulator thin films, we study a one-dimensional (1D) effective model of a topological insulator (TI). Using this effective 1D model, we reveal the precise correspondence between the spatia l profile of the surface wave function, and the dependence of the finite-size energy gap on the thickness (Lx) of the film. We solve the boundary problem both in the semi-infinite and slab geometries to show that the Lx-dependence of the size gap is a direct measure of the amplitude of the surface wave function at the depth of x=Lx+1 [here, the boundary condition is chosen such that the wave function vanishes at x=0]. Depending on the parameters, the edge state function shows either a damped oscillation (in the TI-oscillatory region of FIG. 2, or becomes overdamped (ibid., in the TI-overdamped phase). In the original 3D bulk TI, an asymmetry in the spectrum of valence and conduction bands is omnipresent. Here, we demonstrate by tuning this asymmetry one can drive a crossover from the TI-oscillatory to the TI-overdamped phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا