ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Rayleigh resolution of two incoherent sources by array homodyning

169   0   0.0 ( 0 )
 نشر من قبل Chandan Datta Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional incoherent imaging based on measuring the spatial intensity distribution in the image plane faces the resolution hurdle described by the Rayleigh diffraction criterion. Here, we demonstrate theoretically using the concept of the Fisher information that quadrature statistics measured by means of array homodyne detection enables estimation of the distance between two incoherent point sources well below the Rayleigh limit for sufficiently high signal-to-noise ratio. This capability is attributed to the availability of spatial coherence information between individual detector pixels acquired using the coherent detection technique. A simple analytical approximation for the precision attainable in the sub-Rayleigh region is presented. Furthermore, an estimation algorithm is proposed and applied to Monte Carlo simulated data.



قيم البحث

اقرأ أيضاً

We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightne ss $epsilon$ or by two $epsilon/2$-brightness incoherent sources that are symmetrically disposed about the optical axis. Using the exact thermal-state model of the field, we derive the quantum Chernoff bound for the detection problem, which specifies the optimum rate of decay of the error probability with increasing number of collected photons that is allowed by quantum mechanics. We then show that recently proposed linear-optic schemes approach the quantum Chernoff bound---the method of binary spatial-mode demultiplexing (B-SPADE) is quantum-optimal for all values of separation, while a method using image-inversion interferometry (SLIVER) is near-optimal for sub-Rayleigh separations. We then simplify our model using a low-brightness approximation that is very accurate for optical microscopy and astronomy, derive quantum Chernoff bounds conditional on the number of photons detected, and show the optimality of our schemes in this conditional detection paradigm. For comparison, we analytically demonstrate the superior scaling of the Chernoff bound for our schemes with source separation relative to that of spatially-resolved direct imaging. Our schemes have the advantages over the quantum-optimal (Helstrom) measurement in that they do not involve joint measurements over multiple modes, and that they do not require the angular separation for the two-source hypothesis to be given emph{a priori} and can offer that information as a bonus in the event of a successful detection.
We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular aperture and two or four single-photon emitters obtaining a resolution enhanced by a factor of two or four, respectively.
Quantum lithography proposes to adopt entangled quantum states in order to increase resolution in interferometry. In the present paper we experimentally demonstrate that the output of a high-gain optical parametric amplifier can be intense yet exhibi ts quantum features, namely, sub-Rayleigh fringes, as proposed by Agarwal et al. (Phys. Rev. Lett. 86, 1389 (2001)). We investigate multiphoton states generated by a high-gain optical parametric amplifier operating with a quantum vacuum input for a gain values up to 2.5. The visibility has then been increased by means of three-photon absorption. The present article opens interesting perspectives for the implementation of such an advanced interferometrical setup.
We analyze the fundamental resolution of incoherent optical point sources from the perspective of a quantum detection problem: deciding whether the optical field on the image plane is generated by one source or two weaker sources with arbitrary separ ation. We investigate the detection performances of two measurement methods recently proposed by us to enhance the estimation of the separation. For the detection problem, we show that the method of binary spatial-mode demultiplexing is quantum-optimal for all values of separations, while the method of image-inversion interferometry is near-optimal for sub-Rayleigh separations. Unlike the proposal by Helstrom, our schemes do not require the separation to be given and can offer that information as a bonus in the event of a successful detection. For comparison, we also demonstrate the supremacy of our schemes over direct imaging for sub-Rayleigh separations. These results demonstrate that simple linear optical measurements can offer supremal performances for both detection and estimation.
We present spectroscopic experiments and theory of a quantum dot driven bichromatically by two strong coherent lasers. In particular, we explore the regime where the drive strengths are substantial enough to merit a general non-perturbative analysis, resulting in a rich higher-order Floquet dressed-state energy structure. We show high resolution spectroscopy measurements with a variety of laser detunings performed on a single InGaAs quantum dot, with the resulting features well explained with a time-dependent quantum master equation and Floquet analysis. Notably, driving the quantum dot resonance and one of the subsequent Mollow triplet sidepeaks, we observe the disappearance and subsequent reappearance of the central transition and transition resonant with detuned-laser at high detuned-laser pump strengths and additional higher-order effects, e.g. emission triplets at higher harmonics and signatures of higher order Floquet states. For a similar excitation condition but with an off-resonant primary laser, we observe similar spectral features but with an enhanced inherent spectral asymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا