ﻻ يوجد ملخص باللغة العربية
We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian and subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated to a dissipative ferromagnetic transition. We show that the Von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition even though the system is in a mixed state.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials,
We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase t
We use the Gutzwiller Monte Carlo approach to simulate the dissipative XYZ-model in the vicinity of a dissipative phase transition. This approach captures classical spatial correlations together with the full on-site quantum behavior, while neglectin
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of paralle
Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depinning transition is analogous to a se