ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical behavior of plastic depinning of vortex lattices in two dimensions: Molecular dynamics simulations

102   0   0.0 ( 0 )
 نشر من قبل Yaouen Fily
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depinning transition is analogous to a second order critical transition: the velocity-force response at the onset of motion is continuous and characterized by critical exponents. Combining studies at zero and nonzero temperature and using a scaling analysis, two critical expo- nents are evaluated. We find vsim (F-F_c)^beta with beta=1.3pm0.1 at T=0 and F>F_c, and vsim T^{1/delta} with delta^{-1}=0.75pm0.1 at F=F_c, where F_c is the critical driving force at which the lattice goes from a pinned state to a sliding one. Both critical exponents and the scaling function are found to exhibit universality with regard to the pinning strength and different disorder realizations. Furthermore, the dynamics is shown to be chaotic in the whole critical region.



قيم البحث

اقرأ أيضاً

124 - N. Di Scala , E. Olive , Y. Lansac 2012
Large scale numerical simulations are used to study the elastic dynamics of two-dimensional vortex lattices driven on a disordered medium in the case of weak disorder. We investigate the so-called elastic depinning transition by decreasing the drivin g force from the elastic dynamical regime to the state pinned by the quenched disorder. Similarly to the plastic depinning transition, we find results compatible with a second order phase transition, although both depinning transitions are very different from many viewpoints. We evaluate three critical exponents of the elastic depinning transition. $beta = 0.29 pm 0.03$ is found for the velocity exponent at zero temperature, and from the velocity-temperature curves we extract the critical exponent $delta^{-1} = 0.28 pm 0.05$. Furthermore, in contrast with charge-density waves, a finite-size scaling analysis suggests the existence of a unique diverging length at the depinning threshold with an exponent $ u= 1.04 pm 0.04$, which controls the critical force distribution, the finite-size crossover force distribution and the intrinsic correlation length. Finally, a scaling relation is found between velocity and temperature with the $beta$ and $delta$ critical exponents both independent with regard to pinning strength and disorder realizations.
We consider dislocations in a vortex lattice that is driven in a two-dimensional superconductor with random impurities. The structure and dynamics of dislocations is studied in this genuine nonequilibrium situation on the basis of a coarse-grained eq uation of motion for the displacement field. The presence of dislocations leads to a characteristic anisotropic distortion of the vortex density that is controlled by a Kardar-Parisi-Zhang nonlinearity in the coarse-grained equation of motion. This nonlinearity also implies a screening of the interaction between dislocations and thereby an instability of the vortex lattice to the proliferation of free dislocations.
We study the different dynamical regimes of a vortex lattice driven by AC forces in the presence of random pinning via numerical simulations. The behaviour of the different observables is charaterized as a function of the applied force amplitude for different frequencies. We discuss the inconveniences of using the mean velocity to identify the depinnig transition and we show that instead, the mean quadratic displacement of the lattice is the relevant magnitude to characterize different AC regimes. We discuss how the results depend on the initial configuration and we identify new hysteretic effects which are absent in the DC driven systems.
119 - I.L. Aleiner , B.L. Altshuler , 2011
We discuss quantum propagation of dipole excitations in two dimensions. This problem differs from the conventional Anderson localization due to existence of long range hops. We found that the critical wavefunctions of the dipoles always exist which m anifest themselves by a scale independent diffusion constant. If the system is T-invariant the states are critical for all values of the parameters. Otherwise, there can be a metal-insulator transition between this ordinary diffusion and the Levy-flights (the diffusion constant logarithmically increasing with the scale). These results follow from the two-loop analysis of the modified non-linear supermatrix $sigma$-model.
196 - Y. Fily , E. Olive , J.C. Soret 2009
We use 3D numerical simulations to explore the phase diagram of driven flux line lattices in presence of weak random columnar disorder at finite temperature and high driving force. We show that the moving Bose glass phase exists in a large range of t emperature, up to its melting into a moving vortex liquid. It is also remarkably stable upon increasing velocity : the dynamical transition to the correlated moving glass expected at a critical velocity is not found at any velocity accessible to our simulations. Furthermore, we show the existence of an effective static tin roof pinning potential in the direction transverse to motion, which originates from both the transverse periodicity of the moving lattice and the localization effect due to correlated disorder. Using a simple model of a single elastic line in such a periodic potential, we obtain a good description of the transverse field penetration at surfaces as a function of thickness in the moving Bose glass phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا