ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of the lateral interactions on the critical behavior of long straight rigid rods on two-dimensional lattices

106   0   0.0 ( 0 )
 نشر من قبل Luis Ariel Pugnaloni
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel k-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density theta_c, which increases linearly with the magnitude of the lateral interactions.



قيم البحث

اقرأ أيضاً

111 - L. G. Lopez , D. H. Linares , 2010
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of self-assembled rigid rods on triangular and honeycomb lattices at intermediate density has been studied. The system is composed of monomers with two attractive ( sticky) poles that, by decreasing temperature or increasing density, polymerize reversibly into chains with three allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the IN transition belongs to the q=1 Potts universality class.
The statistical thermodynamics of straight rigid rods of length $k$ on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz fre e energy and its derivatives were written in terms of the order parameter $delta$, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with $delta$ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the reaches and limitations of the theoretical model.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
We have developed a technique utilizing a double quantum well heterostructure that allows us to study the effect of a nearby ground-plane on the metallic behavior in a GaAs two-dimensional hole system (2DHS) in a single sample and measurement cool-do wn, thereby maintaining a constant disorder potential. In contrast to recent measurements of the effect of ground-plane screening of the long-range Coulomb interaction in the insulating regime, we find surprisingly little effect on the metallic behavior when we change the distance between the 2DHS and the nearby ground-plane.
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a two-dimensional system of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with discrete orientational degrees of freedom and, at the same time, undergo a continuous isotropic-nematic (IN) transition. A complete phase diagram was obtained as a function of temperature and density. The numerical results were compared with mean field (MF) and real space renormalization group (RSRG) analytical predictions about the IN transformation. While the RSRG approach supports the continuous nature of the transition, the MF solution predicts a first-order transition line and a tricritical point, at variance with the simulation results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا