ﻻ يوجد ملخص باللغة العربية
In central Au-Au collisions at top RHIC energy, two particle correlation measurements with identified hadron trigger have shown attenuation of near side proton triggered jet-like yield at intermediate transverse momentum ($p{_T}$), 2$< p{_T} <$ 6 GeV/$it{c}$. The attenuation has been attributed to the anomalous baryon enhancement observed in the single inclusive measurements at the same $p{_T}$ range. The enhancement has been found to be in agreement with the models invoking coalescence of quarks as a mechanism of hadronization. Baryon enhancement has also been observed at LHC in the single inclusive spectra. We study the consequence of such an enhancement on two particle correlations at LHC energy within the framework of A Multi Phase Transport (AMPT) model that implements quark coalescence as a mode of hadronization. In this paper we have calculated the proton over pion ratio and the near side per trigger yield associated to pion and proton triggers at intermediate $p{_T}$ from String Melting (SM) version of AMPT. Results obtained are contrasted with the AMPT Default (Def.) which does not include coalescence. Baryon enhancement has been observed in AMPT SM at intermediate $p{_T}$. Near side jet-like correlated yield associated to baryon (proton) trigger in the momentum region where baryon generation is enhanced is found to be suppressed as compared to the corresponding yields for the meson (pion) trigger in most central Pb-Pb events. No such effect has been found in the Default version of AMPT.
In this paper, we give an account of the peripheral-tube model, which has been developed to give an intuitive and dynamical description of the so-called ridge effect in two-particle correlations in high-energy nuclear collisions. Starting from a real
Two-particle rapidity (or pseudorapidity) correlation function $C(y_1, y_2)$ was used in analysing fluctuation of particle density distribution in rapidity in high-energy heavy-ion collisions. In our research, we argue that for a centrality window, s
We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energ
We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of $E_{lab}=1-160 A$ GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange an
Particle production in relativistic collisions of heavy nuclei is analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 62.4 GeV. The analysis is performed within the three-fluid model employing three different equations of state