ﻻ يوجد ملخص باللغة العربية
In this paper, we give an account of the peripheral-tube model, which has been developed to give an intuitive and dynamical description of the so-called ridge effect in two-particle correlations in high-energy nuclear collisions. Starting from a realistic event-by-event fluctuating hydrodynamical model calculation, we first show the emergence of ridge + shoulders in the so-called two-particle long-range correlations, reproducing the data. In contrast to the commonly used geometric picture of the origin of the anisotropic flow, we can explain such a structure dynamically in terms of the presence of high energy-density peripheral tubes in the initial conditions. These tubes violently explode and deflect the near radial flow coming from the interior of the hot matter, which in turn produces a two-ridge structure in single-particle distribution, with approximately two units opening in azimuth. When computing the two-particle correlation, this will result in characteristic three-ridge structure, with a high near-side ridge and two symmetric lower away-side ridges or shoulders. Several anisotropic flows, necessary to producing ridge + shoulder structure, appear naturally in this dynamical description. Using this simple idea, we can understand several related phenomena, such as centrality dependence and trigger-angle dependence.
In central Au-Au collisions at top RHIC energy, two particle correlation measurements with identified hadron trigger have shown attenuation of near side proton triggered jet-like yield at intermediate transverse momentum ($p{_T}$), 2$< p{_T} <$ 6 GeV
To explore the structure of the QCD phase diagram in high baryon density domain, several high-energy nuclear collision experiments in a wide range of beam energies are currently performed or planned using many accelerator facilities. In these experim
We consider the SU(2) Glasma with gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion we follow the evolution of the press
We study the nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nu
The polarization of $Lambda$ hyperons from relativistic flow vorticity is studied in peripheral heavy ion reactions at FAIR and NICA energies, just above the threshold of the transition to the Quark-Gluon Plasma. Previous calculations at higher energ