ترغب بنشر مسار تعليمي؟ اضغط هنا

Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. Coalescence

83   0   0.0 ( 0 )
 نشر من قبل Jan Steinheimer
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of $E_{lab}=1-160 A$ GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for di-baryons including $Xi$s, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti-$^4He$ and even anti-$^4_{Lambda}He$ is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor $R_H$ when comparing the thermal production with the coalescence results.

قيم البحث

اقرأ أيضاً

We review progress in the study of antinuclei, starting from Diracs equation and the discovery of the positron in cosmic-ray events. The development of proton accelerators led to the discovery of antiprotons, followed by the first antideuterons, demo nstrating that antinucleons bind into antinuclei. With the development of heavy-ion programs at the Brookhaven AGS and CERN SPS, it was demonstrated that central collisions of heavy nuclei offer a fertile ground for research and discoveries in the area of antinuclei. In this review, we emphasize recent observations at Brookhavens Relativistic Heavy Ion Collider and at CERNs Large Hadron Collider, namely, the antihypertriton and the antihelium-4, as well as measurements of the mass difference between light nuclei and antinuclei, and the interaction between antiprotons. Physics implications of the new observations and different production mechanisms are discussed. We also consider implications for related fields, such as hypernuclear physics and space-based cosmic-ray experiments.
95 - A. S. Botvina 2013
Within a dynamical and statistical approach we study the main regularities in production of hypernuclei coming from projectile and target residues in relativistic ion collisions. We demonstrate that yields of hypernuclei increase considerably above t he energy threshold for Lambda hyperons, and there is a saturation for yields of single hypernuclei with increasing the beam energy up to few TeV. Production of specific hypernuclei depend very much on the isotopic composition of the projectile, and this gives a chance to obtain exotic hypernuclei that may be difficult to reach in traditional hypernuclear experiments. Possibilities for the detection of such hypernuclei with planned and available relativistic ion facilities are discussed.
The large values and the constituent-quark-number (NCQ) scaling of the elliptic flow of low-$p_T$ $D$ mesons imply that charm quarks, initially produced through hard processes, might be partially thermalized through the strong interactions with the q uark-gluon plasma (QGP) in high-energy heavy-ion collisions. To quantify the degree of thermalization of low-$p_T$ charm quarks, we compare the $D^0$ meson spectra and elliptic flow from a hydrodynamic model to the experimental data as well as transport model simulations. We use an effective charm chemical potential at the freeze-out temperature to account for the initial charm quark production from hard processes and assume that they are thermalized in local comoving frame of the medium before freeze-out. $D^0$ mesons are sampled statistically from the freeze-out hyper-surface of the expanding QGP as described by the event-by-event (3+1)D viscous hydrodynamic model CLVisc. Both hydrodynamic and transport model can describe the elliptic flow of $D^0$ mesons at $p_T<3$ GeV/$c$ as measured in Au+Au collisions at $sqrt{s_{NN}}=200$ GeV. Though the experimental data on $D^0$ spectra are consistent with the hydrodynamic result at small $p_Tsim 1$ GeV/$c$, they deviate from the hydrodynamic model at high transverse momentum $p_T>2$ GeV/$c$. The diffusion and parton energy loss mechanisms in the transport model can describe the measured spectra reasonably well within the theoretical uncertainty. Our comparative study indicates that charm quarks only approach to local thermal equilibrium at small $p_T$ even though they acquire sizable elliptic flow that is comparable to light-quark hadrons at both small and intermediate $p_T$.
138 - Yunpeng Liu , Che-Ming Ko 2016
By solving the rate equation in an expanding quark-gluon plasma, we study thermal production of charm quarks in central Pb+Pb collisions at the Future Circular Collider. With the charm quark production cross section taken from the perturbative QCD at the next-to-leading order, we find that charm quark production from the quark-gluon plasma can be appreciable compared to that due to initial hard scattering between colliding nucleons.
We review the charged particle and photon multiplicity, and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at differ ent collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons and the transverse energy measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا