ﻻ يوجد ملخص باللغة العربية
Future experiments at the Jefferson Lab 12 GeV upgrade, in particular, the Solenoidal Large Intensity Device (SoLID), aim at a very precise data set in the region where the partonic structure of the nucleon is dominated by the valence quarks. One of the main goals is to constrain the quark transversity distributions. We apply recent theoretical advances of the global QCD extraction of the transversity distributions to study the impact of future experimental data from the SoLID experiments. Especially, we develop a simple strategy based on the Hessian matrix analysis that allows one to estimate the uncertainties of the transversity quark distributions and their tensor charges extracted from SoLID data simulation. We find that the SoLID measurements with the proton and the effective neutron targets can improve the precision of the u- and d-quark transversity distributions up to one order of magnitude in the range 0.05 < x < 0.6.
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson ($A^prime$) with sub-GeV mass and coupling to ordinary matter of $g^prime sim (10^{-6} - 10^{-2}) e$. Electrons impin
The E12-14-012 experiment performed at Jefferson Lab Hall A has collected inclusive electron-scattering data for different targets at the kinematics corresponding to beam energy 2.222 GeV and scattering angle 15.54 deg. Here we present a comprehensiv
A wide range of nucleon and nuclear structure experiments in Jefferson Labs Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cav
We investigate the two-dimensional energy-momentum-tensor (EMT) distributions of the nucleon on the light front, using the Abel transforms of the three-dimensional EMT ones. We explicitly show that the main features of all EMT distributions are kept
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estima