ﻻ يوجد ملخص باللغة العربية
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson ($A^prime$) with sub-GeV mass and coupling to ordinary matter of $g^prime sim (10^{-6} - 10^{-2}) e$. Electrons impinge upon a fixed target of high-Z material. An $A^prime$ is produced via a process analogous to photon bremsstrahlung, decaying to an $e^+ e^-$ pair. A test run was held in July of 2010, covering $m_{A^prime}$ = 175 to 250 MeV and couplings $g^prime/e ; textgreater ; 10^{-3}$. A full run is approved and will cover $m_{A^prime} sim$ 65 to 525 MeV and $g^prime/e ; textgreater ; 2.3 times10^{-4}$.
Experiment E04-113 at Jefferson Lab Hall C plans to measure the beam-target double-spin asymmetries in semi-inclusive deep-inelastic $vec p(e, e^prime h)X$ and $vec d(e, e^prime h)X$ reactions ($h=pi^+, pi^-, K^+$ or$K^-$) with a 6 GeV polarized elec
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jeff
The E12-14-012 experiment performed at Jefferson Lab Hall A has collected inclusive electron-scattering data for different targets at the kinematics corresponding to beam energy 2.222 GeV and scattering angle 15.54 deg. Here we present a comprehensiv
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estima
To probe CP violation in the leptonic sector using GeV energy neutrino beams in current and future experiments using argon detectors, precise models of the complex underlying neutrino and antineutrino interactions are needed. The E12-14-012 experimen