ترغب بنشر مسار تعليمي؟ اضغط هنا

Polysemous codes

54   0   0.0 ( 0 )
 نشر من قبل Matthijs Douze
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the problem of approximate nearest neighbor search in the compressed domain. We introduce polysemous codes, which offer both the distance estimation quality of product quantization and the efficient comparison of binary codes with Hamming distance. Their design is inspired by algorithms introduced in the 90s to construct channel-optimized vector quantizers. At search time, this dual interpretation accelerates the search. Most of the indexed vectors are filtered out with Hamming distance, letting only a fraction of the vectors to be ranked with an asymmetric distance estimator. The method is complementary with a coarse partitioning of the feature space such as the inverted multi-index. This is shown by our experiments performed on several public benchmarks such as the BIGANN dataset comprising one billion vectors, for which we report state-of-the-art results for query times below 0.3,millisecond per core. Last but not least, our approach allows the approximate computation of the k-NN graph associated with the Yahoo Flickr Creative Commons 100M, described by CNN image descriptors, in less than 8 hours on a single machine.



قيم البحث

اقرأ أيضاً

Similarity search approaches based on graph walks have recently attained outstanding speed-accuracy trade-offs, taking aside the memory requirements. In this paper, we revisit these approaches by considering, additionally, the memory constraint requi red to index billions of images on a single server. This leads us to propose a method based both on graph traversal and compact representations. We encode the indexed vectors using quantization and exploit the graph structure to refine the similarity estimation. In essence, our method takes the best of these two worlds: the search strategy is based on nested graphs, thereby providing high precision with a relatively small set of comparisons. At the same time it offers a significant memory compression. As a result, our approach outperforms the state of the art on operating points considering 64-128 bytes per vector, as demonstrated by our results on two billion-scale public benchmarks.
Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durabi lity and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.
The determination of the weight distribution of linear codes has been a fascinating problem since the very beginning of coding theory. There has been a lot of research on weight enumerators of special cases, such as self-dual codes and codes with sma ll Singletons defect. We propose a new set of linear relations that must be satisfied by the coefficients of the weight distribution. From these relations we are able to derive known identities (in an easier way) for interesting cases, such as extremal codes, Hermitian codes, MDS and NMDS codes. Moreover, we are able to present for the first time the weight distribution of AMDS codes. We also discuss the link between our results and the Pless equations.
We introduce a formal model for the information leakage of probability distributions and define a notion called distribution privacy as the local differential privacy for probability distributions. Roughly, the distribution privacy of a local obfusca tion mechanism means that the attacker cannot significantly gain any information on the distribution of the mechanisms input by observing its output. Then we show that existing local mechanisms can hide input distributions in terms of distribution privacy, while deteriorating the utility by adding too much noise. For example, we prove that the Laplace mechanism needs to add a large amount of noise proportionally to the infinite Wasserstein distance between the two distributions we want to make indistinguishable. To improve the tradeoff between distribution privacy and utility, we introduce a local obfuscation mechanism, called a tupling mechanism, that adds random dummy data to the output. Then we apply this mechanism to the protection of user attributes in location based services. By experiments, we demonstrate that the tupling mechanism outperforms popular local mechanisms in terms of attribute obfuscation and service quality.
We introduce a general model for the local obfuscation of probability distributions by probabilistic perturbation, e.g., by adding differentially private noise, and investigate its theoretical properties. Specifically, we relax a notion of distributi on privacy (DistP) by generalizing it to divergence, and propose local obfuscation mechanisms that provide divergence distribution privacy. To provide f-divergence distribution privacy, we prove that probabilistic perturbation noise should be added proportionally to the Earth movers distance between the probability distributions that we want to make indistinguishable. Furthermore, we introduce a local obfuscation mechanism, which we call a coupling mechanism, that provides divergence distribution privacy while optimizing the utility of obfuscated data by using exact/approximate auxiliary information on the input distributions we want to protect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا