ﻻ يوجد ملخص باللغة العربية
We introduce a general model for the local obfuscation of probability distributions by probabilistic perturbation, e.g., by adding differentially private noise, and investigate its theoretical properties. Specifically, we relax a notion of distribution privacy (DistP) by generalizing it to divergence, and propose local obfuscation mechanisms that provide divergence distribution privacy. To provide f-divergence distribution privacy, we prove that probabilistic perturbation noise should be added proportionally to the Earth movers distance between the probability distributions that we want to make indistinguishable. Furthermore, we introduce a local obfuscation mechanism, which we call a coupling mechanism, that provides divergence distribution privacy while optimizing the utility of obfuscated data by using exact/approximate auxiliary information on the input distributions we want to protect.
We introduce a formal model for the information leakage of probability distributions and define a notion called distribution privacy as the local differential privacy for probability distributions. Roughly, the distribution privacy of a local obfusca
This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as filte
Program obfuscation is an important software protection technique that prevents attackers from revealing the programming logic and design of the software. We introduce translingual obfuscation, a new software obfuscation scheme which makes programs o
LDP (Local Differential Privacy) has recently attracted much attention as a metric of data privacy that prevents the inference of personal data from obfuscated data in the local model. However, there are scenarios in which the adversary wants to perf
Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data collection. Although existing LDP protocols offer high utility for large user populations (100,000 or more users), they perform poorly in scenarios with small