ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Explanation of the Electron Positron Anomaly at 17 MeV in $^8Be$ Transitions Through a Light Pseudoscalar

61   0   0.0 ( 0 )
 نشر من قبل Ulrich Ellwanger
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate the values of Yukawa couplings of a light pseudoscalar A with a mass of about 17 MeV, which would explain the $^8Be$ anomaly observed in the Atomki pair spectrometer experiment. The resulting couplings of A to up and down type quarks are about 0.3 times the coupling of the standard Higgs boson. Then constraints from K and B decays require that loop contributions to flavour changing vertices cancel at least at the 10% level. Constraints from beam dump experiments require the coupling of A to electrons to be larger than about 4 times the coupling of the standard Higgs boson, leading to a short enough A life time consistent with an explanation of the anomaly.



قيم البحث

اقرأ أيضاً

63 - E. Voutier 2017
The Polarized Electrons for Polarized Positrons (PEPPo) experiment has demonstrated the efficient transfer of polarization from electrons to positrons produced by the bremsstrahlung radiation of a polarized electron beam in a high-$Z$ target. Positro n polarization up to 82% has been measured for an initial electron beam momentum of 8.19 MeV/$c$, limited only by the electron beam polarization. Combined with the high intensity and high polarization performances of polarized electron sources, this technique extends efficient polarized positron capabilities from GeV to MeV electron accelerators. This presentation reviews the PEPPo proof-of-principle experiment and addresses the perspectives for future applications.
A symmetry-preserving regularisation of a vector$times$vector contact interaction (SCI) is used to deliver a unified treatment of semileptonic transitions involving $pi$, $K$, $D_{(s)}$, $B_{(s,c)}$ initial states. The framework is characterised by a lgebraic simplicity, few parameters, and the ability to simultaneously treat systems from Nambu-Goldstone modes to heavy+heavy mesons. Although the SCI form factors are typically somewhat stiff, the results are comparable with experiment and rigorous theory results. Hence, predictions for the five unmeasured $B_{s,c}$ branching fractions should be a reasonable guide. The analysis provides insights into the effects of Higgs boson couplings via current-quark masses on the transition form factors; and results on $B_{(s)}to D_{(s)}$ transitions yield a prediction for the Isgur-Wise function in fair agreement with contemporary data.
A $6.8,sigma$ anomaly has been reported in the opening angle and invariant mass distributions of $e^+e^-$ pairs produced in ${^8Be}$ nuclear transitions. It has been shown that a protophobic fifth force mediated by a $17,textrm{MeV}$ gauge boson $X$ with pure vector current interactions can explain the data through the decay of an excited state to the ground state, ${^8Be^*} to {^8Be}, X$, and then the followed saturating decay $X to e^+e^-$. In this work we propose a renormalizable model to realize this fifth force. Although axial-vector current interactions also exist in our model, their contributions cancel out in the iso-scalar interaction for ${^8Be^*} to {^8Be} ,X$. Within the allowed parameter space, this model can alleviate the $(g-2)_mu$ anomaly problem and can be probed by the LHCb experiment. Several other implications are discussed.
164 - Daniele S. M. Alves 2020
The QCD axion remains experimentally viable in the mass range of O(10 MeV) if (i) it couples predominantly to the first generation of SM fermions; (ii) it decays to $e^+ e^-$ with a short lifetime $tau_alesssim 10^{-13},$s; and (iii) it has suppresse d isovector couplings, i.e., if it is piophobic. Remarkably, these are precisely the properties required to explain recently observed anomalies in nuclear de-excitations, to wit: the $e^+e^-$ emission spectra of isoscalar magnetic transitions of $^{8!}$Be and $^{4!}$He nuclei showed a bump-like feature peaked at $m_{e^+e^-}sim 17$ MeV. In this article, we argue that on-shell emission of the QCD axion (with the aforementioned properties) provides an extremely well-motivated, compatible explanation for the observed excesses in these nuclear de-excitations. The absence of anomalous features in other measured transitions is also naturally explained: piophobic axion emission is strongly suppressed in isovector magnetic transitions, and forbidden in electric transitions. This QCD axion hypothesis is further corroborated by an independent observation: a $2-3,sigma$ deviation in the measurement of $Gamma(pi^0to e^+e^-)$ from the Standard Model theoretical expectation. This article also includes detailed estimations of various axionic signatures in rare light meson decays, which take into account contributions from low-lying QCD resonance exchange, and, in the case of rare Kaon decays, the possible effective implementations of $Delta S=1$ octet enhancement in chiral perturbation theory. These inherent uncertainties of the effective description of the strong interactions at low energies result in large variations in the predictions for hadronic signals of the QCD axion; in spite of this, the estimated ranges for rare meson decay rates obtained here can be probed in the near future in $eta/eta^prime$ and Kaon factories.
The experiment of Krasznahorkay textit{et al} observed the transition of a $rm{^{8}Be}$ excited state to its ground state and accompanied by an emission of $e^{+}e^{-}$ pair with 17 MeV invariant mass. This 6.8$sigma$ anomaly can be fitted by a new l ight gauge boson. We consider the new particle as a $U(1)$ gauge boson, $Z$, which plays as a portal linking dark sector and visible sector. In particular, we study the new $U(1)$ gauge symmetry as a hidden or non-hidden group separately. The generic hidden $U(1)$ model, referred to as dark $Z$ model, is excluded by imposing various experimental constraints. On the other hand, a non-hidden $Z$ is allowed due to additional interactions between $Z$ and Standard Model fermions. We also study the implication of the dark matter direct search on such a scenario. We found the search for the DM-nucleon scattering excludes the range of DM mass above 500 MeV. However, the DM-electron scattering for MeV-scale DM is still allowed by current constraints for non-hidden $U(1)$ models. It is possible to test the underlying $U(1)$ portal model by the future Si and Ge detectors with $5e^{-}$ threshold charges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا