ترغب بنشر مسار تعليمي؟ اضغط هنا

Signals of the QCD axion with mass of 17 MeV/c^2: nuclear transitions and light meson decays

165   0   0.0 ( 0 )
 نشر من قبل Daniele Alves
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The QCD axion remains experimentally viable in the mass range of O(10 MeV) if (i) it couples predominantly to the first generation of SM fermions; (ii) it decays to $e^+ e^-$ with a short lifetime $tau_alesssim 10^{-13},$s; and (iii) it has suppressed isovector couplings, i.e., if it is piophobic. Remarkably, these are precisely the properties required to explain recently observed anomalies in nuclear de-excitations, to wit: the $e^+e^-$ emission spectra of isoscalar magnetic transitions of $^{8!}$Be and $^{4!}$He nuclei showed a bump-like feature peaked at $m_{e^+e^-}sim 17$ MeV. In this article, we argue that on-shell emission of the QCD axion (with the aforementioned properties) provides an extremely well-motivated, compatible explanation for the observed excesses in these nuclear de-excitations. The absence of anomalous features in other measured transitions is also naturally explained: piophobic axion emission is strongly suppressed in isovector magnetic transitions, and forbidden in electric transitions. This QCD axion hypothesis is further corroborated by an independent observation: a $2-3,sigma$ deviation in the measurement of $Gamma(pi^0to e^+e^-)$ from the Standard Model theoretical expectation. This article also includes detailed estimations of various axionic signatures in rare light meson decays, which take into account contributions from low-lying QCD resonance exchange, and, in the case of rare Kaon decays, the possible effective implementations of $Delta S=1$ octet enhancement in chiral perturbation theory. These inherent uncertainties of the effective description of the strong interactions at low energies result in large variations in the predictions for hadronic signals of the QCD axion; in spite of this, the estimated ranges for rare meson decay rates obtained here can be probed in the near future in $eta/eta^prime$ and Kaon factories.

قيم البحث

اقرأ أيضاً

The QCD axion is one of the most compelling solutions of the strong CP problem. There are major current efforts into searching for an ultralight, invisible axion, which is believed to be the only phenomenologically viable realization of the QCD axion . Visible axions with decay constants at or below the electroweak scale are believed to have been long excluded by laboratory searches. Considering the significance of the axion solution of the strong CP problem, we revisit experimental constraints on QCD axions in the O(10 MeV) mass window. In particular, we find a variant axion model that remains compatible with existing constraints. This model predicts new states at the GeV scale coupled hadronically, and a variety of low-energy axion signatures, such as rare meson decays, nuclear de-excitations via axion emission, production in $e^+e^-$ annihilation and fixed target experiments. This reopens the possibility of solving the strong CP problem at the GeV scale.
We revisit QCD calculations of radiative heavy meson decay form factors by including the subleading power corrections from the twist-two photon distribution amplitude at next-to-leading-order in $alpha_s$ with the method of the light-cone sum rules ( LCSR). The desired hard-collinear factorization formula for the vacuum-to-photon correlation function with the interpolating currents for two heavy mesons is constructed with the operator-product-expansion technique in the presence of evanescent operators. Applying the background field approach, the higher twist corrections from both the two-particle and three-particle photon distribution amplitudes are further computed in the LCSR framework at leading-order in QCD, up to the twist-four accuracy. Combining the leading power point-like photon contribution at tree level and the subleading power resolved photon corrections from the newly derived LCSR, we update theory predictions for the nonperturbative couplings describing the electromagnetic decay processes of the heavy mesons $H^{ast , pm} to H^{pm} , gamma$, $H^{ast , 0} to H^{0} , gamma$, $H_s^{ast , pm} to H_s^{pm} , gamma$ (with $H=D, , B$). Furthermore, we perform an exploratory comparisons of our sum rule computations of the heavy-meson magnetic couplings with the previous determinations based upon different QCD approaches and phenomenological models.
We evaluated recent CLAS Collaboration measurements for the $90^circ$ meson photoproduction off the nucleon using a tagged photon beam spanning the energy interval $s = 3 - 11$ GeV$^2$. The results are compared with the Quark Counting Rules predictions.
The QCD axion is a well-motivated addition to the standard model to solve the strong $CP$ problem. If the axion acquires mass dominantly from a hidden sector, it can be as heavy as $O(1)$ GeV, and the decay constant can be as low as $O(100)$ GeV with out running into the axion quality problem. We propose new search strategies for such heavy QCD axions at the Belle II experiment, where the axions are expected to be produced via $Bto K a$. We find that a subsequent decay $ato 3pi$ with a displaced vertex leads to a unique signal with essentially no background, and that a dedicated search can explore the range $O(1-$$10)$ TeV of decay-constant values. We also show that $ato gammagamma$ can cover a significant portion of currently unexplored region of $150 lesssim m_a lesssim 500$ MeV.
We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Latti ce and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا