ﻻ يوجد ملخص باللغة العربية
We study deviations between MSSM and $Z_3$-invariant NMSSM, with respect to their predictions in $Delta F=2 $ processes. We find that potentially significant effects arise either from the well known double-penguin diagrams, due to the extra scalar NMSSM states, or from neutralino-gluino box contributions, due to the extended neutralino sector. Both are discussed to be effective in the large $tanbeta$ regime. Enhanced genuine-NMSSM contributions in double penguins are expected for a light singlet spectrum (CP-even,CP-odd), while the magnitude of box effects is primarily controlled through singlino mixing. The latter is found to be typically subleading (but non-negligible) for $lambda lesssim 0.5$, however it can become dominant for $lambdasim mathcal{O}(1)$. We also study the low $tanbeta$ regime, where a distinction between MSSM and NMSSM can come instead due to experimental constraints, acting differently on the allowed parameter space of each model. To this end, we incorporate the LHC Run-I limits from $Hrightarrow Z Z$, $A rightarrow hZ$ and $H^pm rightarrow tau u $ non-observation along with Higgs observables and set (different) upper bounds for new physics contributions in $Delta F=2 $ processes. We find that a $sim 25%$ contribution in $Delta M_{s(d)}$ is still possible for MFV models, however such a large effect is nowadays severely constrained for the case of MSSM, due to stronger bounds on the charged Higgs masses.
We study deviations between MSSM and NMSSM in the predictions of $Delta F=2$ processes. We found that there can be two sources which can cause such deviations, emph{i.e}, due to certain neutralino-gluino cross box diagrams and due to well known doubl
We show that the interplay between the LHC and the e^+ e^- International Linear Collider (ILC) with sqrt{s}=500 GeV might be crucial for the discrimination between the minimal and next-to-minimal supersymmetric standard model. We present an NMSSM sce
We present a model-independent anatomy of the $Delta F=2$ transitions $K^0-bar K^0$, $B_{s,d}-bar B_{s,d}$ and $D^0-bar D^0$ in the context of the Standard Model Effective Field Theory (SMEFT). We present two master formulae for the mixing amplitude
Motivated by the recently improved lattice QCD results on the hadronic matrix elements entering $Delta M_{s,d}$ in $B_{s,d}^0-bar B_{s,d}^0$ mixings and the resulting increased tensions between $Delta M_{s,d}$ and $varepsilon_K$ in the Standard Model
This letter summarises the status of the global fit of the CKM parameters within the Standard Model performed by the CKMfitter group. Special attention is paid to the inputs for the CKM angles $alpha$ and $gamma$ and the status of $B_stomumu$ and $B_