ﻻ يوجد ملخص باللغة العربية
We study deviations between MSSM and NMSSM in the predictions of $Delta F=2$ processes. We found that there can be two sources which can cause such deviations, emph{i.e}, due to certain neutralino-gluino cross box diagrams and due to well known double penguin diagrams. Both are effective at large $tan beta$. In addition to this, taking into account 8 TeV direct search constraints from the heavy Higgs searches, we study the maximum allowed MFV like new physics (NP) effects on $Delta M_s$ in the two models. In NMSSM such NP effects can be as large as $25 %$, on the other hand in MSSM such large contributions are severely constrained.
We study deviations between MSSM and $Z_3$-invariant NMSSM, with respect to their predictions in $Delta F=2 $ processes. We find that potentially significant effects arise either from the well known double-penguin diagrams, due to the extra scalar NM
We present a model-independent anatomy of the $Delta F=2$ transitions $K^0-bar K^0$, $B_{s,d}-bar B_{s,d}$ and $D^0-bar D^0$ in the context of the Standard Model Effective Field Theory (SMEFT). We present two master formulae for the mixing amplitude
We investigate model independent top-quark corrections to $Delta F = 2$ processes for the down-type quarks within the framework of the Standard Model Effective Field Theory. Dimension-six $Delta F = 1$ operators contribute to them through renormaliza
In this work we analyze a new piece present in the $Delta F = 2$ effective Lagrangian in models with extra vector-like quarks. This piece, which was not taken into account previously, is required in order to preserve gauge invariance once the unitari
We show that the interplay between the LHC and the e^+ e^- International Linear Collider (ILC) with sqrt{s}=500 GeV might be crucial for the discrimination between the minimal and next-to-minimal supersymmetric standard model. We present an NMSSM sce