ﻻ يوجد ملخص باللغة العربية
Motivated by the recently improved lattice QCD results on the hadronic matrix elements entering $Delta M_{s,d}$ in $B_{s,d}^0-bar B_{s,d}^0$ mixings and the resulting increased tensions between $Delta M_{s,d}$ and $varepsilon_K$ in the Standard Model and CMFV models, we demonstrate that these tensions can be removed in 331 models based on the gauge group $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ both for $M_{Z^prime}$ in the LHC reach and well beyond it. But the implied new physics (NP) patterns in $Delta F=1$ observables depend sensitively on the value of $|V_{cb}|$. Concentrating the analysis on three 331 models that have been selected by us previously on the basis of their performance in electroweak precision tests and $varepsilon^prime/varepsilon$ we illustrate this for $|V_{cb}|=0.042$ and $|V_{cb}|=0.040$. We find that these new lattice data still allow for positive shifts in $varepsilon^prime/varepsilon$ up to $6times 10^{-4}$ for $M_{Z^prime}=3~TeV$ for both values of $$|V_{cb}|$ but for $M_{Z^prime}=10~TeV$ only for $|V_{cb}|=0.040$ such shifts can be obtained. NP effects in $B_stomu^+mu^-$ and in the Wilson coefficient $C_9$ are significantly larger in all three models for the case of $|V_{cb}|=0.040$. In particular in two models the rate for $B_stomu^+mu^-$ can be reduced by NP by $20%$ for $M_{Z^prime}=3~TeV$ resulting in values in the ballpark of central values from CMS and LHCb. In the third model a shift in $C_9$ up to $C_9^text{NP}=-0.5$ is possible. We also consider the simplest 331 model, analyzed recently in the literature, in which $X=Y$, the usual hypercharge. We find that in this model NP effects in flavour observables are much smaller than in the three models with $X ot=Y$, in particular NP contributions to the ratio $varepsilon^prime/varepsilon$ are very strongly suppressed.
Motivated by the recent findings that the ratio $varepsilon/varepsilon$ in the Standard Model (SM) appears to be significantly below the data we investigate whether the necessary enhancement of this ratio can be obtained in 331 models, in which new p
Recently the RBC-UKQCD lattice collaboration presented new results for the hadronic matrix elements relevant for the ratio $varepsilon/varepsilon$ in the Standard Model (SM). With the present knowledge of the Wilson coefficients and isospin breaking
In the absence of direct evidence for New Physics at present LHC energies, the focus is set on the anomalies and discrepancies recently observed in rare $b to sellell$ transitions which can be interpreted as indirect hints. Global fits have shown tha
Estimates of the CP violating observable $varepsilon/varepsilon$ have gained some attention in the past few years. Depending on the long-distance treatment used, they exhibit up to $2.9sigma$ deviation from the experimentally measured value. Such a d
Theory uncertainties on non-local hadronic effects limit the New Physics discovery potential of the rare decays $Bto K^*mu^+mu^-$. We investigate prospects to disentangle New Physics effects in the short-distance coefficients from these effects. Our