Proton radii of $^{12-19}$C densities derived from first accurate charge changing cross section measurements at 900$A$ MeV with a carbon target are reported. A thick neutron surface evolves from $sim$ 0.5 fm in $^{15}$C to $sim$ 1 fm in $^{19}$C. The halo radius in $^{19}$C is found to be 6.4$pm$0.7 fm as large as $^{11}$Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce well the radii.
The differential cross sections of the $^{12}$C($^3$He,t)$^{12}$N reaction leading to formation of the 1$^+$ (ground state), 2$^+$(0.96 MeV), 2$^{-}$(1.19 MeV), and 1$^{-}$(1.80 MeV) states of $^{12}$N are measured at $E$($^3$He)=40 MeV. The analysis
of the data is carried out within the modified diffraction model (MDM) and distorted wave Born approximation (DWBA). Enhanced $rms$ radii were obtained for the ground, 2$^{-}$(1.19 MeV), and 1$^{-}$(1.80 MeV) states. We revealed that $^{12}$B, $^{12}$N, and $^{12}$C in the IAS with T=1, and spin-parities 2$^{-}$ and 1$^{-}$ have increased radii and exhibit properties of neutron and proton halo states.
The low-lying unbound level structure of the halo nucleus $^{19}textrm{C}$ has been investigated using single-neutron knockout from $^{20}textrm{C}$ on a carbon target at 280 MeV/nucleon. The invariant mass spectrum, derived from the momenta of the f
orward going beam velocity $^{18}textrm{C}$ fragment and neutrons, was found to be dominated by a very narrow near threshold ($E_textrm{rel}$ = 0.036(1) MeV) peak. Two less strongly populated resonance-like features were also observed at $E_textrm{rel}$ = 0.84(4) and 2.31(3) MeV, both of which exhibit characteristics consistent with neutron $p$-shell hole states. Comparisons of the energies, measured cross sections and parallel momentum distributions to the results of shell-model and eikonal reaction calculations lead to spin-parity assignments of $5/2^+_1$ and $1/2^-_1$ for the levels at $E_x$ = 0.62(9) and 2.89(10) MeV with $S_n$ = 0.58(9) MeV. Spectroscopic factors were also deduced and found to be in reasonable accord with shell-model calculations. The valence neutron configuration of the $^{20}textrm{C}$ ground state is thus seen to include, in addition to the known $1s^2_{1/2}$ component, a significant $0d^2_{5/2}$ contribution. The level scheme of $^{19}textrm{C}$, including significantly the $1/2^-_1$ cross-shell state, is well accounted for by the YSOX shell-model interaction developed from the monopole-based universal interaction.
We use an underground counting lab with an extremely low background to perform an activity measurement for the $^{12}$C+$^{13}$C system with energies down to $Erm_{c.m.}$=2.323 MeV, at which the $^{12}$C($^{13}$C,$p$)$^{24}$Na cross section is found
to be 0.22(7) nb. The $^{12}$C+$^{13}$C fusion cross section is derived with a statistical model calibrated using experimental data. Our new result of the $^{12}$C+$^{13}$C fusion cross section is the first decisive evidence in the carbon isotope systems which rules out the existence of the astrophysical S-factor maximum predicted by the phenomenological hindrance model, while confirming the rising trend of the S-factor towards lower energies predicted by other models, such as CC-M3Y+Rep, DC-TDHF, KNS, SPP and ESW. After normalizing the model predictions with our data, a more reliable upper limit is established for the $^{12}$C+$^{12}$C fusion cross sections at stellar energies.
A thick neutron skin emerges from the first determination of root mean square radii of the proton distributions for $^{17-22}$N from charge changing cross section measurements around 900$A$ MeV at GSI. Neutron halo effects are signaled for $^{22}$N f
rom an increase in the proton and matter radii. The radii suggest an unconventional shell gap at $N$ = 14 arising from the attractive proton-neutron tensor interaction, in good agreement with shell model calculations. $Ab$ $initio$, in-medium similarity re-normalization group, calculations with a state-of-the-art chiral nucleon-nucleon and three-nucleon interaction reproduce well the data approaching the neutron drip-line isotopes but are challenged in explaining the complete isotopic trend of the radii.
The neutron yield in $^{12}$C(d,n)$^{13}$N and the proton yield in $^{12}C(d,p)^{13}$C have been measured by deuteron beam from 0.6 MeV to 3 MeV which is delivered from a 4-MeV electro static accelerator bombarding on the thick carbon target. The neu
trons are detected at $0degree$, $24degree$, $48degree$ and the protons at $135degree$ in the lab frame. The ratios of the neutron yield to the proton one have been calculated and can be used as an effective probe to pin down the resonances. The resonances are found at 1.4 MeV, 1.7 MeV, 2.5 MeV in $^{12}C(d,p)^{13}$C and at 1.6 MeV, 2.7 MeV in $^{12}$C(d,n)$^{13}$N. This method provides a way to reduce the systematic uncertainty and helps to confirm more resonances in compound nuclei.