ﻻ يوجد ملخص باللغة العربية
A thick neutron skin emerges from the first determination of root mean square radii of the proton distributions for $^{17-22}$N from charge changing cross section measurements around 900$A$ MeV at GSI. Neutron halo effects are signaled for $^{22}$N from an increase in the proton and matter radii. The radii suggest an unconventional shell gap at $N$ = 14 arising from the attractive proton-neutron tensor interaction, in good agreement with shell model calculations. $Ab$ $initio$, in-medium similarity re-normalization group, calculations with a state-of-the-art chiral nucleon-nucleon and three-nucleon interaction reproduce well the data approaching the neutron drip-line isotopes but are challenged in explaining the complete isotopic trend of the radii.
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CE
The differential cross sections of the $^{12}$C($^3$He,t)$^{12}$N reaction leading to formation of the 1$^+$ (ground state), 2$^+$(0.96 MeV), 2$^{-}$(1.19 MeV), and 1$^{-}$(1.80 MeV) states of $^{12}$N are measured at $E$($^3$He)=40 MeV. The analysis
The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical $r$-process in producing nuclei heavier than $Asim190$. Despite their importance, the structure and properties of these nuclei remain experimen
The absolute differential cross sections for small-angle proton elastic scattering off the nuclei $^{12,14-17}$C have been measured in inverse kinematics at energies near 700 MeV/u at GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served
We have performed high precision measurements of the zero-energy neutron scattering amplitudes of gas phase molecular hydrogen, deuterium, and $^{3}$He using neutron interferometry. We find $b_{mathit{np}}=(-3.7384 pm 0.0020)$ fmcite{Schoen03}, $b_{m