ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-neutron knockout from $^{20}textrm{C}$ and the structure of $^{19}textrm{C}$

116   0   0.0 ( 0 )
 نشر من قبل Jongwon Hwang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-lying unbound level structure of the halo nucleus $^{19}textrm{C}$ has been investigated using single-neutron knockout from $^{20}textrm{C}$ on a carbon target at 280 MeV/nucleon. The invariant mass spectrum, derived from the momenta of the forward going beam velocity $^{18}textrm{C}$ fragment and neutrons, was found to be dominated by a very narrow near threshold ($E_textrm{rel}$ = 0.036(1) MeV) peak. Two less strongly populated resonance-like features were also observed at $E_textrm{rel}$ = 0.84(4) and 2.31(3) MeV, both of which exhibit characteristics consistent with neutron $p$-shell hole states. Comparisons of the energies, measured cross sections and parallel momentum distributions to the results of shell-model and eikonal reaction calculations lead to spin-parity assignments of $5/2^+_1$ and $1/2^-_1$ for the levels at $E_x$ = 0.62(9) and 2.89(10) MeV with $S_n$ = 0.58(9) MeV. Spectroscopic factors were also deduced and found to be in reasonable accord with shell-model calculations. The valence neutron configuration of the $^{20}textrm{C}$ ground state is thus seen to include, in addition to the known $1s^2_{1/2}$ component, a significant $0d^2_{5/2}$ contribution. The level scheme of $^{19}textrm{C}$, including significantly the $1/2^-_1$ cross-shell state, is well accounted for by the YSOX shell-model interaction developed from the monopole-based universal interaction.

قيم البحث

اقرأ أيضاً

New precise unpolarised differential cross sections of deuteron-proton elastic scattering have been measured at 16 different deuteron beam momenta between $p_d = 3120.17;textrm{MeV}/c$ and $p_d =3204.16;textrm{MeV}/c$ at the COoler SYnchrotron COSY o f the Forschungszentrum Julich. The data, which were taken using the magnetic spectrometer ANKE, cover the equivalent range in proton kinetic energies from $T_p = 882.2;textrm{MeV}$ to $T_p = 918.3;textrm{MeV}$. The experimental results are analysed theoretically using the Glauber diffraction model with accurate nucleon-nucleon input. The theoretical cross section at $T_p = 900;textrm{MeV}$ agrees very well with the experimental one at low momentum transfers $|t| <0.2;(textrm{GeV}/c)^2$.
Proton radii of $^{12-19}$C densities derived from first accurate charge changing cross section measurements at 900$A$ MeV with a carbon target are reported. A thick neutron surface evolves from $sim$ 0.5 fm in $^{15}$C to $sim$ 1 fm in $^{19}$C. The halo radius in $^{19}$C is found to be 6.4$pm$0.7 fm as large as $^{11}$Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce well the radii.
From superconductors to atomic nuclei, strongly-interacting many-body systems are ubiquitous in nature. Measuring the microscopic structure of such systems is a formidable challenge, often met by particle knockout scattering experiments. While such m easurements are fundamental for mapping the structure of atomic nuclei, their interpretation is often challenged by quantum mechanical initial- and final-state interactions (ISI/FSI) of the incoming and scattered particles. Here we overcome this fundamental limitation by measuring the quasi-free scattering of 48 GeV/c 12C ions from hydrogen. The distribution of single protons is studied by detecting two protons at large angles in coincidence with an intact 11B nucleus. The 11B detection is shown to select the transparent part of the reaction and exclude the otherwise large ISI/FSI that would break the 11B apart. By further detecting residual 10B and 10Be nuclei, we also identified short-range correlated (SRC) nucleon-nucleon pairs, and provide direct experimental evidence for the separation of the pair wave-function from that of the residual many-body nuclear system. All measured reactions are well described by theoretical calculations that do not contain ISI/FSI distortions. Our results thus showcase a new ability to study the short-distance structure of short-lived radioactive atomic nuclei at the forthcoming FAIR and FRIB facilities. These studies will be pivotal for developing a ground-breaking microscopic understanding of the structure and properties of nuclei far from stability and the formation of visible matter in the universe.
The one neutron knock-out reaction $^1$H($^{20}$C,$^{19}$C$gamma$) was studied at RIKEN using the DALI2 array. A $gamma$ ray transition was observed at 198(10) keV. Based on the comparison between the experimental production cross section and theoret ical predictions, the transition was assigned to the decay of the 3/2$_1^+$ state to the ground state.
Results are presented from a one-neutron knockout reaction at relativistic energies on 56Ti using the GSI FRS as a two-stage magnetic spectrometer and the Miniball array for gamma-ray detection. Inclusive and exclusive longitudinal momentum distribut ions and cross-sections were measured enabling the determination of the orbital angular momentum of the populated states. First-time observation of the 955(6) keV nu p3/2-hole state in 55Ti is reported. The measured data for the first time proves that the ground state of 55Ti is a 1/2- state, in agreement with shell-model calculations using the GXPF1A interaction that predict a sizable N=34 gap in 54Ca.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا