ﻻ يوجد ملخص باللغة العربية
We consider bosonic random matrix partition functions at nonzero chemical potential and compare the chiral condensate, the baryon number density and the baryon number susceptibility to the result of the corresponding fermionic partition function. We find that as long as results are finite, the phase transition of the fermionic theory persists in the bosonic theory. However, in case that bosonic partition function diverges and has to be regularized, the phase transition of the fermionic theory does not occur in the bosonic theory, and the bosonic theory is always in the broken phase.
Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the c
Lattice QCD at finite chemical potential is difficult due to the sign problem. We use stochastic quantization and complex Langevin dynamics to study this issue. First results for QCD in the hopping expansion are encouraging. U(1) and SU(3) one link m
The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because
Partition functions of two different matrix models for QCD with chemical potential are computed for an arbitrary number of quark and complex conjugate anti-quark flavors. In the large-N limit of weak nonhermiticity complete agreement is found between
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action.