ﻻ يوجد ملخص باللغة العربية
In recent development of quantum technologies, a frequency conversion of quantum signals has been studied widely. We investigate the optic-microwave entanglement that is generated by applying an electro-optomechanical frequency conversion scheme to one mode in an optical two-mode squeezed vacuum state. We quantify entanglement of the converted two-mode Gaussian state, where surviving entanglement of the state is analyzed with respect to the parameters of the electro-optomechanical system. Furthermore, we show that there exists an upper bound for the entanglement that survives after the conversion of highly entangled optical states. Our study provides a theoretical platform for a practical quantum illumination system.
We propose a dynamically-dark-mode (DDM) scheme to realize the reversible quantum conversion between microwave and optical photons in an electro-optomechanical (EOM) model. It is shown that two DDMs appear at certain times during the dynamical evolut
Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic se
In the development of quantum microwave-to-optical (MO) converters, excessive noise induced by the parametric optical drive remains a major challenge at milli-Kelvin temperatures. Here we study the extraneous noise added to an electro-optic transduce
Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on d
Encoding information onto optical fields is the backbone of modern telecommunication networks. Optical fibers offer low loss transport and vast bandwidth compared to electrical cables, and are currently also replacing coaxial cables for short-range c