ﻻ يوجد ملخص باللغة العربية
A combined experimental and numerical study on the variation of the elastic properties of defective single-crystal diamond is presented for the first time, by comparing nano-indentation measurements on MeV-ion-implanted samples with multi-scale modeling consisting of both ab initio atomistic calculations and meso-scale Finite Element Method (FEM) simulations. It is found that by locally introducing defects in the 2x10^18 - 5x10^21 cm-3 density range, a significant reduction of, as well as of density, can be induced in the diamond crystal structure without incurring in the graphitization of the material. Ab initio atomistic simulations confirm the experimental findings with a good degree of confidence. FEM simulations are further employed to verify the consistency of measured deformations with a stiffness reduction, and to derive strain and stress levels in the implanted region. Combining these experimental and numerical results, we also provide insight into the mechanism responsible for the depth dependence of the graphitization threshold in diamond. This work prospects the possibility of achieving accurate tunability of the mechanical properties of single-crystal diamond through defect engineering, with significant technological applications, i.e. the fabrication and control of the resonant frequency of diamond-based micromechanical resonators.
A fine control of the variation of the refractive index as a function of structural damage is essential in the fabrication of diamond-based optical and photonic devices. We report here about the variation of the real part of the refractive index at l
A method for obtaining a smooth, single crystal diamond surface is presented, whereby a sacrificial defective layer is created by implantation and graphitized by annealing before being selectively etched. We have used O+ at 240 keV, the main process
We demonstrate the fabrication of sub-micron layers of single-crystal diamond suitable for subsequent processing as demonstrated by this test ring structure. This method is a significant enabling technology for nanomechanical and photonic structures
We report on the Raman and photoluminescence characterization of three-dimensional microstructures created in single crystal diamond with a Focused Ion Beam (FIB) assisted lift-off technique. The method is based on MeV ion implantation to create a bu
Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concen